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Generalized Tonic-Clonic Seizures Detection Using
Deep Learning Techniques
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Abstract— Epilepsy treatment can be significantly enhanced
through automated seizure detection from electroencephalogra-
phy. This study focuses on the detection of generalized tonic-
clonic seizures, a critical seizure type associated with risks
such as sudden unexpected death in Epilepsy (SUDEP) and
postictal pulmonary edema (PPE), by leveraging advanced deep
learning models, including Self-Supervised Graph Neural Net-
works, Long Short-Term Memory networks (LSTM) and CNN.
This research aims to improve the precision and reliability of
detecting tonic-clonic seizures, as well as applying techniques
such as data augmentation and specialized loss functions. These
novel approaches demonstrate promising results in enhancing the
detection capabilities of EEG-based seizure detection systems.

Keywords— EEG, Epilepsy, Tonic-Clonic Seizure, Deep Learn-
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I. INTRODUCTION

Epilepsy is a disease characterized by the presence of
unprovoked or reflex seizures in a person. It can be diagnosed
if conditions are met, including recurrent seizures or abnormal
findings in the Electroencephalogram (EEG). Epilepsy affects
1-2% of the global population, and it is estimated that around
10% of people will experience a single epileptic seizure
during their lifetime [1]. There are several types of seizures
according to the primary classification of the International
League Against Epilepsy (ILAE), divided into Focal seizure,
generalized seizure, unknown onset, and unclassifiable [2].

The frequency of generalized tonic-clonic seizure (GTCS) is
considered the most important clinical risk factor for sudden
unexpected death in Epilepsy (SUDEP) [3]: the higher the
GTCS frequency, the higher the risk of SUDEP. GTCS is
associated with Postictal pulmonary edema (PPE) and with
traumatic injuries due to falls or jerking movements of the
limbs [4].

Due to the need for accurate seizure detectors, several
hospital-based research organizations have released public
benchmark datasets for seizure detection tasks. This collabo-
rative effort, involving various stakeholders, has led to several
attempts to detect seizures and abnormalities using deep neural
network models [5]. The complexity and the unbalanced data
have been significant challenges, but the research community
has been resilient in its pursuit of solutions.

In this paper, we present and compare the performance
of three state-of-the-art models under the same experimental
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setting of binary tonic-clonic detection. Here, the models
receive an EEG signal and detect whether the patient is
currently having a tonic-clonic or not. We also compare the
different loss functions used for EEG purposes, including the
dice loss for data imbalance [6].

II. METHODS

A. Database Description

This study uses the public Temple University Hospital EEG
Seizure Corpus (TUSZ) v1.5.2, the largest available public
EEG seizure database. This database includes 5,612 EEG
recordings, of which 3,050 contain annotated seizures from
clinical recordings, encompassing eight types of seizures [7].
Our focus is tonic-clonic seizures, which make up only 1%
of the seizures in the dataset. The majority of the EEG
data were sampled at 250Hz (87%), with the rest sampled
at 256Hz (8.3%), 400Hz (3.8%), and 512Hz (1%), including
2,377 seizures from over 200 patients.

The dataset’s subjects were 51% female, with ages spanning
from under one year to over 90 years old (mean age 51.6,
standard deviation 55.9). Each patient had 1.56 sessions on
average, although some patients had as many as 37 EEG
recordings over eight months [7].

TABLE I
SEIZURE TYPES TUSZ V1.5.2

Seizure Type Seizure Number Duration (s)
Focal Non-specific 1836 121139
generalized Non-Specific 583 59717
Complex Partial 367 36321
Absence 99 852
Tonic 62 1204
Tonic-Clonic 48 5548
Simple Partial 52 2146
Myoclonic 3 1312

B. Preprocessing

The dataset was divided into two groups: one containing
tonic-clonic seizures and the other containing background
activity combined with other seizure types. 19 EEG channels
were used in the standard 10-20 system. The training set was
randomly split into training and validation sets with a 85/15
ratio.

Our experiments analyzed EEG clips across train, valida-
tion, and test datasets. These sets contained EEG clips related
to Generalized Tonic-Clonic Seizures (GTCS), other seizures,
and a combined set of background data with seizures, as
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shown in Table II. For our tonic-clonic seizure binary detection
task, we specifically focused on the subset of EEG clips
representing tonic-clonic seizures against background activity
and other types of seizures. This targeted approach allowed us
to isolate and analyze the distinctive EEG patterns associated
with tonic-clonic seizures within a diverse EEG signal context.

TABLE II
DISTRIBUTION OF EEG CLIPS ACROSS TRAIN, VALIDATION, AND TEST.

Data Train
(EEG clips)

Validation
(EEG clips)

Test
(EEG clips)

GTCS 320 18 103
Other seizures 13466 2420 4580
Backround + seizures 196543 28036 44639
Total 196646 28057 44959

We performed a resampling technique to standardize the
EEG signal to a standard frequency of 200 Hz [8]. For
detection, we incorporate two groups of signals: a) Tonic-
clonic signal and b) Background and the remaining seizure
types. We preprocess the EEG signals to extract clips in the
frequency domain. EEG clips are generated by sliding a rect-
angular window of 12 seconds over the EEG signals without
overlapping. Each clip is assigned to a label. Specifically, a
label equal to 1 is assigned if tonic-clonic seizure is present
within the clip and 0 otherwise.

We applied the Fast Fourier Transform (FFT) to each 12-
second EEG clip, which corresponds to 2400 samples. Then,
the log amplitudes of the non-negative frequency components
are generated. The EEG clips are z-normalized for the mean
and standard deviation of the training data [8].

C. Models

Our application of three state-of-the-art deep learning mod-
els for detecting epileptic seizures has significant practical
implications. These models, designed to leverage the latest
advancements in neural network architectures, have demon-
strated superior performance in accurately identifying and
categorizing seizure events in EEG data. By employing these
cutting-edge techniques, we aim to enhance the precision
and reliability of automated systems for detecting tonic-clonic
seizures, thereby improving the quality of life for patients with
epilepsy.

1) SELF-SUPERVISED GRAPH NEURAL NETWORK:
The spatiotemporal dependencies in EEG signals can be
modeled using a framework inspired by the Diffusion Con-
volutional Recurrent Neural Network (DCRNN), which was
initially created for traffic forecasting [9]. DCRNN captures
traffic flow dynamics through a diffusion process, a concept
that can also be applied to EEG signals. In this context, spatial
dependencies among electrodes can be modeled as a diffusion
process influenced by neighboring electrodes. This influence is
based on functional proximity measured by correlation. The
diffusion process is characterized by a bidirectional random
walk on a directed graph, leading to a specific diffusion
convolution [10].

To capture dynamic brain connectivity, the model defines
the connection strength between two nodes based on the

absolute value of the normalized cross-correlation between
their preprocessed signals. To make the graph more manage-
able and focused, sparsity is introduced by retaining only the
strongest connections: each node keeps edges only with its top-
t neighbors. This results in a unique, directed, weighted graph
for each EEG clip. For example, with t set to 3, each node
in the graph is connected to its three most strongly correlated
neighbors [11].

2) Long Short-Term Memory (LSTM): Each data sample
undergoes processing via two stacked LSTM networks, which
serve as the input for the memory model. The external
memory model operates with an initial memory state. An input
controller receives the encoded hidden states from the LSTMs,
determining relevant information for memory querying, result-
ing in a query vector. An attention score vector measures the
similarity between memory content and the query. The output
controller selects which results from the memory stack should
be sent to the memory module for the current state. The update
controller then modifies the memory state based on the output
and transfers it to the next time step. This process incorporates
a combination of fixed weights and adaptable components.
Finally, the output of the memory model is input into a
dense layer with a softmax activation function for seizure type
prediction [12].

We maintain consistency by ensuring that the number of
Long Short-Term Memory (LSTM) layers and hidden units
align with the number of Diffusion Convolutional Gated Re-
current Unit (DCGRU) layers and hidden units in our DCRNN
model. This approach ensures a harmonized architecture across
both models, facilitating seamless integration and comparison
of results between the sequential and memory-based compo-
nents [13].

3) Convolutional Neural Network (CNN): We use a densely
connected inception architecture inspired by [12] for seizure
onset detection. This modeling approach combines the most
compelling aspects of deep inception46 networks and densely
connected net-work47 architectures. Each Inception block,
which consists of three convolutional filters with different
kernel sizes, is fully connected with other Inception blocks.
The model consisted of 8 inception layers followed by two
fully connected layers [11].

D. Loss funtions
For the detection of tonic-clonic seizures, we employed all

three models with an equal number of layers in the networks.
Additionally, we adjusted the loss functions to accommodate
the imbalanced nature of the database, considering that only
1% of the EEG clips are labeled as tonic-clonic seizures.
To address this, we utilized cross-entropy loss, dice entropy,
and focal loss, each tailored to handle class imbalance dif-
ferently. This modification aimed to emphasize the accurate
classification of these minority instances. In order to see
if it mitigates the impact of class imbalance and enhances
the model’s capability to detect tonic-clonic seizures in EEG
signals accurately [13].

1) Cross Entropy loss: In addressing the challenge of
imbalanced data for tonic-clonic seizure detection, we incor-
porated cross-entropy loss to enhance the performance of our



XLII BRAZILIAN SYMPOSIUM ON TELECOMMUNICATIONS AND SIGNAL PROCESSING - SBrT 2024, OCTOBER 01–04, 2024, BELÉM, PA

models. Cross-entropy loss measures the discrepancy between
the predicted probability distribution and the true distribution
of classes. It penalizes misclassifications proportionally to the
difference between the predicted and true class probabilities,
effectively guiding the model towards accurate classification
[13]. It can be represented as equation (1):

CrossEntropyLoss = −
∑

jϵ{0,1}

yij logpij . (1)

2) Dice Entropy Loss: Dice entropy is a variation of the
Dice coefficient, commonly used in image segmentation tasks,
and it has been adapted here to handle class imbalance in
classification problems. It evaluates the overlap between the
predicted and true positive instances, with higher values indi-
cating better performance. The Dice entropy loss function aims
to maximize the overlap while minimizing the discrepancy
between predicted and true positive instances [6]. It can be
expressed as equation (2):

DiceEntropyLoss = 1− 2pi1yi1 + γ

p2i1 + y2i1 + γ
. (2)

By incorporating Dice entropy loss, we aim to enhance
model performance by effectively addressing data imbalance
and prioritizing accurate classification of tonic-clonic seizure
instances within EEG signals.

3) Focal Loss: Focal loss is specifically designed to handle
class imbalance by down-weighting well-classified examples
and emphasizing misclassified instances. This property makes
it particularly suitable for tasks where minority classes are
crucial. The focal loss function reweights the cross-entropy
loss, assigning lower weights to well-classified examples and
higher weights to misclassified ones [14]. It can be represented
as equation (3):

FocalLoss = αt (1− pt)
γ
log (pt) . (3)

E. Data Augmentation

For Data augmentation, we employ the same model as that
described in [10]: The raw signals are subject to random scal-
ing, where their amplitudes are adjusted within the range of
0.8 to 1.2. Additionally, the signals undergo random reflection
along the mid-line of the scalp.

III. EXPERIMENTAL RESULTS

This research employed DCRNN, LSTM, and CNN models
with specific parameters optimized for tonic-clonic seizure
detection. The model configuration includes the following key
parameters: An input dimension of 100 and an initial learning
rate of 0.0001. We use a dual random walk, and the models are
structured with three RNN layers, each comprising 64 units
and 19 nodes in total. Our training process involves 50 epochs,
utilizing a batch size of 40. The optimizer used was Adam,
and the algorithm was implemented using PyTorch and run
on an RTX 3090 Ti GPU. The raw EEG data was sourced
from the designated directory, and training progress was saved
accordingly.

In this study, we utilized the Area Under the Receiver
Operating Characteristic Curve (AUROC) as the primary eval-
uation metric for tonic-clonic seizure detection rather than
accuracy. The choice of AUROC is particularly pertinent due
to detection task [15]. Accuracy, while commonly used, can be
misleading in such scenarios because it tends to be dominated
by the majority class, potentially masking the model’s true
performance in detecting rare but critical events like seizures.
AUROC, on the other hand, provides a more robust assessment
by considering the true positive rate (sensitivity) and false
positive rate across different threshold settings, offering a
comprehensive view of the model’s ability to distinguish
between classes [16].

The performance of different models using various loss
functions for tonic-clonic seizure detection is summarized in
Table III. Each model was evaluated using AUROC to high-
light its effectiveness in detecting seizures in the imbalanced
dataset.

TABLE III
AUROC SCORES FOR TONIC-CLONIC SEIZURE DETECTION MODELS

WITH AND WITHOUT DATA AUGMENTATION (WO/DA), TRAINED WITH

THREE DIFFERENT LOSS FUNCTIONS CROSS ENTROPY LOSS (CE), DICE

ENTROPY LOSS (DE) AND FOCAL LOSS (FL).

Model wo/DA AUROC w/DA AUROC
DCRNN 0.632 ± 0.124 0.759 ± 0.030
LSTM 0.598 ± 0.057 0.778 ± 0.079

CE Loss CNN 0.647 ± 0.085 0.775 ± 0.107
DCRNN 0.675 ± 0.012 0.781 ± 0.048
LSTM 0.625 ± 0.032 0.764± 0.021

DE Loss CNN 0.649± 0.114 0.741 ± 0.103
DCRNN 0.678 ± 0.014 0.752 ± 0.095
LSTM 0.667 ± 0.070 0.734 ± 0.043

FL Loss CNN 0.642 ± 0.016 0.753 ± 0.028

The DCRNN models consistently demonstrated robust per-
formance across all loss functions. Without data augmentation,
the AUROC scores ranged from 0.632 ± 0.124 with Cross
Entropy Loss to 0.678 ± 0.014 with Focal Loss. The introduc-
tion of data augmentation significantly improved these scores,
with the Dice Entropy Loss configuration achieving the highest
AUROC of 0.781 ± 0.048. This indicates that DCRNN models
benefit substantially from specialized loss functions and data
augmentation.

While initially showing lower performance than DCRNN
models, LSTM models also exhibited notable improvements
with data augmentation. Without augmentation, the AUROC
scores were lowest with Cross Entropy Loss at 0.598 ± 0.057
and highest with Focal Loss at 0.667 ± 0.070. With data
augmentation, the performance of LSTM models improved
significantly, achieving the highest AUROC of 0.778 ± 0.079
with Cross Entropy Loss. This suggests that LSTM models are
highly responsive to the benefits of data augmentation, even
surpassing DCRNN in certain configurations.

CNN models showed competitive performance throughout
the study, especially with Dice Entropy Loss. The AUROC
scores without data augmentation ranged from 0.642 ± 0.016
with Focal Loss to 0.649 ± 0.114 with Dice Entropy Loss.
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Data augmentation led to substantial improvements, with the
highest AUROC score of 0.775 ± 0.107 observed with Cross
Entropy Loss.

In our evaluation, the CNN model outperformed previous
studies [10] with an AUROC of 0.775, while the LSTM model
performed similarly with an AUROC of 0.778. However, it
should be noted that the DCRNN model, which has demon-
strated superior performance in [10] with an AUROC of 0.866,
was not explicitly optimized for binary tonic-clonic seizure
detection but for general seizure detection. The AUROC values
reported in other studies [11] for CNN, LSTM, and DCRNN
were 0.749, 0.786, and 0.866, respectively.

IV. CONCLUSIONS

Overall, DCRNN models consistently performed well across
different loss functions, with Dice entropy loss showing the
most significant improvement in AUROC. CNN models also
showed strong performance, particularly with Dice entropy
loss. LSTM models benefited from Dice Entropy loss. The use
of data augmentation significantly enhanced AUROC across all
models, highlighting its effectiveness in addressing imbalanced
datasets. Using AUROC as the evaluation metric reflected the
models’ capabilities in detecting tonic-clonic seizures. In the
future, we will investigate different methods for using these
models in online applications.
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