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Pre-Trained Language Models in Semantic
Communication

Luiz Fernando Gontijo and Paulo Cardieri

Abstract— Communication systems traditionally focus on accu-
rately transmitting signals without considering semantic content.
This paper introduces semantic communication models using pre-
trained language models, T5 and BART, compared to conven-
tional methods like Huffman and Turbo coding. Numerical results
demonstrate the semantic models’ superiority, especially in low
SNR conditions, measured by BLEU and BERTScore metrics.
Also, the proposed system only needs fine tuning to obtain good
results in environments with severe fading. The results suggests
a paradigm shift where decoding semantic meaning, rather than
exact message replication, becomes crucial. Such models pave
the way for novel communication architectures and emphasize
the importance of semantic understanding in communication
systems.

Keywords— Semantic Communications, Language Models, Sig-
nal Processing, Deep Leaning.

I. INTRODUCTION

Communication system models can be defined as the repli-
cation of a message at the receiver sent by the transmitter.
The model for how we see communication systems was
first defined by Shannon in 1948 [1]. This perspective seeks
accurate transmission of the message and exact data recovery
by the receiver. The search for similarity between messages is
proposed at the bit level.

Therefore, conventional communication systems focus on
the reliability and efficiency of sending signals and do not con-
sider the semantics present in the message [2]. The transmitter
and receiver are treated as agents without intelligence or prior
knowledge about the scope of the messages. Messages sent
in this way may contain irrelevant and semantically redundant
content. Such irrelevant content could be suppressed, if the
receiver and transmitter already had prior knowledge about
the text or the area of knowledge of the subject sent, resulting
in a reduction in the use of communication resources.

Weaver and Shannon defined three fundamental commu-
nication problems [3] based on the technical, semantic, and
effectiveness telecommunications paradigms. Currently, all
communication systems operate with the aim of overcoming
the technical problem, and promoting the recovery of symbols
by the receiver in the most accurate way possible. As for the
semantic problem, the receiving system starts recognizing the
symbol sent based on its exact or approximate interpretation.
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The last problem implies that the receiver of the command
sent by the signal conducts itself as expected. Therefore, the
semantic-based communication proposal attempts to solve the
semantic problem.

Studies on semantic information date back to 1952, carried
out by Carnap and Bar-Hillel [4]. However, in recent works,
such as [5], attempts have been made to classify alternative
semantic representations in different data sources. Therefore,
the advancement of AI has directly impacted the development
of alternatives for communications networks [8]. The use of
deep learning techniques and extensive databases has enabled
the achievement of good results in the field of semantic
communications, as presented in [9]. In this last work, the
advancement of the model using Transformers architecture,
initially proposed in [10], is notable.

In the present work, we introduce the use of pre-trained
models in semantic-based communication systems. We pro-
pose a system with semantic coding and decoding layers
obtained by pre-trained BART and T5 models together with
channel coding and decoding layers composed of neural net-
works. The contribution of this work is to show the possibility
of using different pre-trained language models to obtain good
results in semantic communication models. By using the pre-
acquired knowledge capacity of the language models, it was
possible to note that the fast training of one epoch was enough
for the proposed systems to reach a performance superior
to that of traditional coding. We also show that even when
the proposed system was trained under non-severe channel
conditions (i.e. AWGN channel), its performance overcame the
traditional system under severe channel conditions (Rayleigh
fading). The results indicate a new research path for the
development of semantic communication systems.

II. SYSTEM DESCRIPTION

A. Problem Description

For the presentation of the proposed system, we as-
sume that the input sentences are represented by sss =
[w1, w2, w3, . . . , wk], where wl represents the l-th word of the
sentence. The encoded signal can be represented by

x = Cα(Sβ(sss)), (1)

where x are complex symbols required for transmission, Sβ(·)
represents the semantic coding network with the parameter
set β and Cα(·) is the channel encoding network with the
parameter set α.

The symbols x are transmitted over a communication chan-
nel, which will be disturbed by noise n and small-scale fading
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h. Thus, the channel output is [14]

y = hx + n. (2)

For the Rayleigh fading channel, the coefficients h follow the
distribution CN (0, 1), while the noise term n follows n ∼
CN (0, σ2

n).
The decoded signal can be represented as

ŝss = S−1
χ (C−1

σ (y)), (3)

where ŝss is the vector with the decoded tokens (smallest units
of meaning, such as words and numbers). Furthermore, S−1

χ (·)
represents the semantic decoder with parameters χ and C−1

σ (·)
represents the channel decoder with σ parameters.

B. Architecture

Figure 1 presents the proposed architecture for the seman-
tic communication system. It contains semantic coding and
decoding modules, provided by pre-trained models. Also, the
proposed systems have channel coding and decoding modules
made of fully connected layers. The use of pre-trained models
together with fully connected networks as channel encoders is
one of the innovations of the proposed system.

Channel
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Fig. 1: Semantic communication system based on [13].

The semantic coding decoding steps are based on pre-
trained Transformers models. Such models have separate en-
coder and decoder modules, which are trained together.

The channel coding and decoding steps were implemented
using neural networks, as proposed in [9]. Figure 2 illustrates
the channel encoding step using dense layers. Other channel
encoding alternatives could be considered, as in [13].
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Fig. 2: Channel coding architecture based on [9].

C. Model Training

The system training proposal is summarized in Algorithm
1. The encoded signal x is obtained by the semantic coding of
the symbols sss. Then, the semantic codes are transmitted over
the communication channel. After that, channel and semantic
decoding are applied to obtain the ŝss sentences.

To update the weights α, β, σ, χ, a good choice for the loss
equation is cross entropy (CE), evaluated as

LCE = −
∑

q(wl) log(p(wl)) + (1− q(wl)) log(1− p(wl)),
(4)

where q(wl) is the probability that the l-th word, wl, appears
in the transmitted sentence s, and p(wl) is the predicted
probability that the i-th word, wi, appears in the decoded
sentence ŝss.

The choice of the cross-entropy equation to calculate the
error is due to its ability to measure the difference between
two different probability distributions. The network, presented
in Figure 1, is able to learn the distribution q(wl) given by the
input sentence ŝss, indicating that the syntax and the meaning
of the word in the context are being learned by the network.

Algorithm 1 System-wide training algorithm.
1: Inicialização: Initial weights α, β, σ and χ from previous

steps.
2: Inputs: Input tokens s.
3: Transmition:
4: x← Cα(Sβ(sss)),
5: Transmits x over the communication channel.
6: Reception:
7: Detects ŷ on the receiver,
8: x̂← S−1

χ (C−1
σ (ŷ)),

9: Calculates LCE by the Equation (4) comparing sss and
ŝss,

10: Trains Sα, Cβ , C−1
σ and S−1

χ ← Gradient Descent
with LCE .

11: Outputs: Updated weights of networks Sα, Cβ , C−1
σ and

S−1
χ .

An important emphasis must be given to training sequence-
to-sequence models. First, such models create output se-
quences (or just sentences) from input sequences. In that way,
the generation of output data occurs in a contextual manner;
for example, in the context of this work, to generate a word,
the model needs to know the previous word provided. This
alternative differs from generalist auto-encoder models, which
are trained by comparing entire sentences leaving the decoder.
As BART [11] and T5 [12] models are sequence-to-sequence
types, their training is done in a contextual manner.

III. PERFORMANCE METRICS

For the study presented in this paper, involving transmission
of text, the use of performance metrics such as BER (Bit Error
Rate) is not justified. In transmitting semantic information,
we must focus only on comparing the transmitted text with
the received text. Thus, the bit error is irrelevant to the pro-
posal’s objective and does not accurately reflect the system’s
performance in the desired way. In fact, a literature survey on
semantic communication systems shows that researchers are
still looking for a better way to measure the performance of
the proposed models. Two alternatives often used, as in [9]
and [15], are BLEU (Bilingual Evaluation Understudy) and
BERTScore, described next.
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A. BLEU

The BLEU metric was first proposed in [16] to evaluate
text translations. The value of this metric is given by the
equivalence between text segments. Therefore, the metric is
decomposed into n-grams for each group made up of one to
four words. Such groupings are compared, and the metric is
evaluated as follows:

log(BLEU) = min

(
1− lŝ

ls
, 0

) N∑
n=1

un log pn, (5)

where un are the weights of the n-grams and pn is the n-gram
score calculated according to

pn =

∑
k min(Ck(ŝss), Ck(sss))∑

k min(Ck(ŝss)))
, (6)

where Ck(·) is the frequency count for the k-th element in the
n-gram.

The BLEU value varies from 0 to 1. For the proposed study,
the metric is used to evaluate up to four grams. For the 1-gram
(or unigram), the metric compares the frequency of each word
in the decoded sentence with the original sentence. For the 2-
gram (or bigram), this comparison uses groups of two words.
For 3-gram, the comparison is between groups of three words,
and for 4-gram, the comparison is between groups of four
words.

In this way, if a group of words has a frequency of
occurrence in the decoded sentence equivalent to the frequency
in the original sentence, the BLEU value will be higher. It
is important to note that this comparison considers the exact
occurrence of each word or group of words in the text.

For better notation, the BLEU values for each n-gram will
be written as BLEU-1, BLEU-2, BLEU-3, and BLEU-4 in
accordance with the n-gram groupings.

B. BERTScore

As noted in the previous section, the BLEU metric only
evaluates the equivalence between words within the same
group of n-grams. In this way, the comparison between differ-
ent words with the same meaning would give a bad result by
the metric, but the sentences could have the same meaning.
Thus, the evaluation of the transmission of semantics between
different sentences would be compromised.

To overcome this difficult, some authors, such as Xie et al.
in [9], started using the BERTScore metric. This metric was
first proposed in [17] and considers the pre-trained contextual
embeddings of the BERT model - a state-of-the-art natural
language processing (NLP) model composed of several Trans-
formers layers and trained in a bidirectional manner, as deeply
explained in [18]. To calculate the metric, cosine similarity is
considered, as in the expression

BERTScore =
BΦBΦBΦ(sss) ·BΦBΦBΦ(ŝss)

T∥∥BΦBΦBΦ(sss)
∥∥∥∥BΦBΦBΦ(ŝss)

∥∥ , (7)

where BΦBΦBΦ(sss) represents the vectors extracted from the pre-
trained BERT model, according to the input tokens sss. Note that
this metric also varies from 0 to 1 to measure the similarity
between the phrases sss and ŝss.

Since the BERT model was trained from millions of sen-
tences, we can conclude that it learned the semantics coming
from these input texts. Thus, the operator BΦBΦBΦ(·) must present
close vectors if the semantic value between them is also
close. This aspect differentiates the BERTScore metric from
the BLEU, as the latter cannot identify semantic similarities
between different sentences.

IV. NUMERICAL RESULTS

A traditional signal transmission scheme was considered
as a baseline for comparison. This scheme comprises the
Huffman algorithm for entropy coding, Turbo coding for
channel coding, and 128-QAM modulation. For Turbo coding,
polynomials of size 4 and a code rate equal to 0.5 were used.
We also utilized 5 iterations and the maxlog decoding method
for Turbo decoding. To implement this coding alternative, the
NVIDIA Sionna library [19] was employed.

The choice of the T5 and BART models is justified because
they both divide their architectures into encoding and decoding
modules. As presented in references [11] and [12], BART
and T5 models have different distilled versions with varying
amounts of parameters.

To obtain the results, the smallest available versions of each
of these models were considered. This alternative facilitates
model training and demonstrates that even more compressed
versions of pre-trained models can give good results for
developing semantic-based communication systems. In that
way, the T5-SMALL and BART-BASE versions were used.
It is worth noting that T5-SMALL has 60.5M parameters, and
BART-BASE has 139M parameters. Specifically for this work,
the model created using T5-SMALL was called T5-SC, and
the one created using BART-BASE was called BART-SC.

Table I summarizes the proposed semantic coding models,
with the number of output units of each layer.

TABLE I: Semantic Communication summary architecture.

Layer Name Units Activation Function

Transmitter
(Encoder)

Transformer Encoder 128 Linear
Dense 256 Relu
Dense 16 Relu

Channel AWGN None None

Receiver
(Decoder)

Dense 16 ReLu
Dense 256 ReLu

Transformer Decoder 128 Softmax

For the proposed models T5-SC and BART-SC, it was
necessary to jointly train the coding and decoding modules in
just one epoch. It was observed that the loss function metrics
during this training decreased as expected. This is justified by
the pre-training of the T5 and BART models. For T5-SC, it
was necessary to use a learning rate equal to 0.001, while for
BART-SC, a learning rate equal to 0.0005 was considered.
Such values were obtained experimentally by training the
models using portions of the original training data.

For a better comparison of results, the proposed models
T5-SC and BART-SC were trained under the same condition
– AWGN channel at a signal-to-noise ratio (SNR) equal to
12dB.
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Fig. 3: BLEU results for AWGN only channel. The proposed models present better BLEU results in low SNR conditions.
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Fig. 4: BLEU results for Rayleigh channel. As expected, the Rayleigh fading causes a noticeable degradation to the results,
but the proposed system maintains better results compared with the traditional alternative.

TABLE II: Sample sentences over Rayleigh fading channel for SNR = 12 dB.

Sentence BLEU-1 BERTScore
Transmitted sentence **ii cooperation procedure (second reading) - -
Received, HF + TURBO **ii cooperation procelure (dpb d rearttdt/sta u 0.50 0.81
Received, T5-SC **ii cooperation procedure (second reading) 1.00 1.00
Received, BART-SC **ii cooperation procedure (second reading) 1.00 1.00

The dataset used for training, validation, and testing is the
proceedings of the European Parliament [20]. This dataset con-
tains 2 million sentences and approximately 53 million words.
To allow comparison with the results of [9], only sentences
containing 4 to 30 words were used in our experiments.

Figure 3 presents the BLEU results in different n-grams
(BLEU-1, BLEU-2, BLEU-3 and BLEU-4) under the AWGN
channel conditions. We can see that for low SNR (poor chan-
nel conditions), the pre-trained models present better BLEU
results than the traditional system. As expected, the BLEU
metrics for larger n-grams present worse results for the same
channel condition. This is due to the difficulty in observing
the exact same group of words between the input sentence and
the decoded sentence.

Figure 4 shows the same BLEU metrics, but now under
the Rayleigh channel, having been trained under the AWGN
channel conditions (as discussed above). As expected, at the
same SNR level, the results under Rayleigh fading are worse
compared with the AWGN-only channel. Even so, the results

for the proposed models are still better than the traditional
coding case. This is especially seen at low SNR levels.

For larger blocks of words, such as 3-gram and 4-gram,
the decoding of the T5-SC and BART-SC semantic models
was better for low SNR levels, such as 10dB, as can be seen
in the Figures 3 and 4. In this way, the decoding promoted
in a contextual way in sequence-to-sequence models presents
results of words that are related to each other, resulting in
good decoding of textual blocks.

Low BLEU values for some decoding cases may not have
been caused by word choices in similar but different contexts
to the original sentence. This fact indicates a syntactic error
highlighted by the BLEU metric but may not mean a semantic
error.

Figure 5 presents the BERTScore results for the proposed
models considering a Rayleigh channel. For the results in
Figure 5, the improved performance of the T5-SC and BART-
SC models is noted when compared to the traditional coding
models. Using BERTScore metric, we can assume that at low
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Fig. 5: BERTScore results for Rayleigh channel.

SNR levels, such as 6dB, the decoded text could already be
understandable by the receiver, with a BERTScore above 0.80.

Moreover, with the aim of comparing the results, Table II
presents the same sentence in the 12dB condition on a channel
with the presence of Rayleigh fading for the four models
obtained.

V. CONCLUSIONS

In this paper, we propose two semantic communication
models using pre-trained language models. Due to the archi-
tecture of each model, T5 and BART models were chosen. As
a comparison, a traditional encoding model based on Huffman
and Turbo coding was used.

Numerical comparisons demonstrate the advantage of using
pre-trained language models T5 and BART. For the different
blocks of words in the BLEU metric, the semantic models
presented a better performance, especially under low SNR.
When considering the BERTScore metric, there are also better
results for semantic cases, indicating that the decoded sen-
tences present a better response for human judgment. It is also
important to note that the semantic models were trained just
in one condition (AWGN channel and SNR equals 12 dB) but
demonstrated good results in the presence of Rayleigh fading.
Also, the proposed models used just one epoch of training.
This point indicates a good perspective of using those models
to encode texts with different base knowledge.

Furthermore, this proposal indicates a new perspective on
the objective of communication - it would not be necessary to
obtain the message decoded exactly, but only something close
and with the same semantic notion. Therefore, new metrics
such as BERTScore must be considered.

The good results obtained in this research open up the option
to use pre-trained language models on other data sources or
with other communication system architectures.
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