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Programming in a WPCN-NOMA Scenario with
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Abstract— This paper presents a wireless powered commu-
nication network (WPCN) that features a power beacon (PB)
with multiple antennas for power transfer to single-antenna
terminals employing energy harvesting (EH). These terminals
use non-orthogonal multiple access (NOMA) to transmit their
data to a single-antenna access point (AP), in an imperfect
successive interference cancellation (SIC) scenario. The objective
of this work is to propose a heuristic method that maximizes the
throughput of the terminals subject to a quality-of-service (QoS)
conditions. To this end, comparisons of the heuristic method with
branch-and-bound (BB) through simulations are carried out. The
results demonstrated that proposed method yields better results
in terms of throughput and energy efficiency compared to the
BB algorithm, by optimizing the power for each terminal.

Keywords— energy harvesting (EH), imperfect successive in-
terference cancellation (SIC), non-orthogonal multiple access
(NOMA), wireless powered communication network (WPCN),
wireless power transfer (WPT).

I. INTRODUCTION

In recent years, wireless communications have experienced
advancements in connectivity that will enable a future where
most electronic devices will be connected to the network.
The deployment of fifth generation (5G) networks has been
a primary catalyst for the phenomenon of hyperconnectivity,
in such a manner that by the fourth quarter of 2023 it had
reached approximately 1.6 billion mobile subscriptions [1].
In this conducive environment, the Internet of Things gains
ground, particularly one of its branches, the wireless sensor
network (WSN). This network consists of low-power sensors
that sporadically monitor environmental conditions. Thus, the
sensors are typically in sleep mode [2].

These sensors are specific cases of Internet of Things
devices adapted for ambient energy. According to [3], these
devices, which harvest energy through radio waves, either lack
a battery or have a low-capacity battery, such as a capacitor.
In this context, wireless powered communication network
(WPCN) is a suitable network because the time frame is split
into two phases. In the phase 1, a power beacon (PB), i.e.,
an access point (AP) aimed at power transfer, broadcasts an
energy signal where devices perform energy harvesting (EH).

Pedro V. M. Castro is affiliated with the Wireless Telecommunications
Research Group (GTEL), Federal University of Ceará, Fortaleza-CE, Brazil.
Francisco R. M. Lima is affiliated with the Postgraduate Program in Electrical
and Computer Engineering (PPGEEC), Sobral campus, Federal University
of Ceará, Sobral-CE, Brazil and also with the Wireless Telecommunica-
tions Research Group (GTEL), Fortaleza-CE, Brazil, e-mails: {pedrovictor,
rafaelm}@gtel.ufc.br. This work was partially financed by FUNCAP.

In phase 2, the devices send their information to another AP
using a multiple access technique. As it is crucial to increase
bandwidth and decrease latency in IoT systems [4], non-
orthogonal multiple access (NOMA) is considered because as
reported in [5], NOMA outperforms other orthogonal multiple
access schemes in terms of these criteria. Also, a PB with
multiple antennas and beamforming is considered to increase
spatial streams, improve channel efficiency, increase signal
strength, and reduce interference [4]. In this work, these
devices are referred to as terminals.

The scheme studied by [6] considered a single-antenna co-
located PB and AP, and multiple single-antenna terminals. The
work compared multiple access techniques such as NOMA
and time division multiple access (TDMA) in order to max-
imize the total system data throughput, i.e., the sum of each
terminal data rate. In a NOMA configuration, it was assumed
that the AP perfectly decodes the terminals’ data by using
successive interference cancellation (SIC). The work focused
on maximizing the total system rate without concern for the
discrepancy between terminal data rates. It was shown that
NOMA improves fairness compared to methods employing
conventional orthogonal schemes.

The study presented by [7] considered a WPCN network
with a multiple antenna co-located PB and AP and multiple
single-antenna terminals. The work compared TDMA and
space division multiple access (SDMA) and their respective
impacts on the energy efficiency of the network. To this
end, several optimization problems were addressed, with the
objective of maximizing the network’s energy efficiency. It
was demonstrated that when there is no data rate restriction
for terminals, TDMA outperforms SDMA.

In [8], a WPCN-NOMA system model with a single-antenna
co-located PB and AP and multiple single-antenna terminals
is investigated in the presence of imperfections in the SIC
process. The work evaluates the impact of the SIC decoding
order and the time duration where the AP transfers power
to the terminals in a configuration without quality of service
(QoS) restrictions imposed on the terminals. Consequently, a
suboptimal solution based on analytical insights was proposed
to enhance the system throughput. Other works, such as [9]
and [10], utilize intelligent reflecting surface (IRS) and both
employ a configuration similar to that presented in [8], with
the exception that [10] considers the use of co-located PBs
and APs that are unmanned aerial vehicles (UAVs). The ob-
jective of [9] is to maximize the system throughput with QoS
restrictions on the terminals by employing a genetic algorithm
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(GA). In contrast, the objective of [10] is to maximize the
minimum throughput by employing a semi-definite relaxation
(SDR).

This paper encompasses a broader range of topics than
previous studies, employing a WPCN-NOMA network with
separated PB and AP, where the first has multiple antennas,
while the second has a single antenna and presents imperfec-
tion in the SIC process. Furthermore, in our system, we impose
QoS restrictions on our single-antenna terminals. The objective
is to maximize the system throughput. In order to achieve this
objective, we propose a heuristic method that optimizes: the
time duration for phase 1, the SIC decoding order and the
power allocated for each terminal.

The remainder of this work is organised as follows. First, the
system model is presented in Section II. Then, we formulate
our optimization problem in Section III. Subsequently, we
propose the heuristic method in Section IV. Then, we compare
the performance of the proposed method with Branch-and-
Bound (BB) in Section V. Finally, we present our conclusions
in Section VI.

Notation: Scalars, vectors and matrices are represented as
a, a, A. The following operations: (.)T , (.)H , ∥.∥, E(.) and |.|
stand for transpose, conjugate transpose, l2 norm, expectation
and the modulus, respectively.

II. SYSTEM MODEL

We assume a WPCN composed of a multiple-antennas PB
in the center of a circular area where single-antenna terminals
are uniformly distributed. At the corner of the circular area
there is a single-antenna AP. We assume that the time frame
is split in multiple slots, where the time frame length is lower
than the channel coherence interval. A WPCN network using
a time division duplex (TDD) scheme is adopted with two
phases: phase 1, where the energy is transfer from the PB to
the terminals, and phase 2, where the data is transmitted from
the terminals to the AP. Thus, in a frame, ne slots are used for
phase 1, and ni slots are used for phase 2, such that the sum
of ne and ni results in the total number of slots in a frame,
N . Figure 1 illustrates the described scenario.

Fig. 1. System model illustration.

Before starting the phase 1 modeling, we define some
important variables for the model. Let terminal j ∈ J =
{1, 2, · · · , J}, where J is the number of terminals, M is the
number of antenna elements in the PB. The slots ne, ni ∈ N =

{1, · · · , N − 1}, such that ne + ni = N . This shows that the
two phases will always use at least one slot. We consider the
duration of a slot to be T s, so the time interval of a frame is
T f = NT s.

Another consideration is that all sub-channels in both phases
are modeled by a Rayleigh distribution whose random vari-
ables are independent and identically distributed [7][11]. Thus,
the frequency response of the channel in phase 1 between
antenna m of the PB and terminal j is defined as

hj,m =
√

1/2 · (aj,m + jbj,m) ·
√

10−3/dϕPB−j , (1)

where aj,m, bj,m ∼ N (0, 1), dPB−j is the distance between
the PB and terminal j, and ϕ is the path loss coefficient. Thus,
the subchannel hj,m is an element of the jth row and mth
column of the channel matrix H ∈ CJ×M . We define hj ∈
C1×M as the row vector of the jth row of matrix H, thus H =
[hT

1 , · · · ,hT
J ]

T . Let yj be the signal arriving at terminal j, the
jth component of vector y ∈ CJ×1. We consider the precoding
matrix W ∈ CM×J as the matched filter solution, that is, W =
[hH

1 /∥hH
1 ∥, · · · ,hH

J /∥hH
J ∥]. Thus, the kth column vector of

the precoding matrix W is wk = hH
k /∥hH

k ∥. Thus, the signal
vector y is given as

y = HWx+ n, (2)

where n ∼ N (0, σ2I) is the additive white gaus-
sian noise (AWGN) with noise power, σ2, and x =
s[
√
α1P , · · · ,

√
αJP ]T ∈ RJ×1, where s is a baseband

signal and αj ∈ R is the power allocation of the system
for terminal j, satisfying the constraints

∑J
j=1 αj = 1 and

0 ≤ αj ≤ 1, ∀j ∈ J . Moreover, P is the total power that the
PB uses for phase 1. We define the power weight vector as
α = [α1, · · · , αJ ]

T ∈ RJ×1. Therefore, the power transferred
to terminal j is the element in the jth row and jth column of
the covariance matrix E(yyH) which is given by

P̄ j =

J∑
k=1

αkP

∣∣∣∣hjh
H
k

∥hH
k ∥

∣∣∣∣2 + σ2. (3)

Thus, the useful energy for terminal j during phase 1 is given
by Ej,ne = η · ne · T s · P̄j , where 0 ≤ η ≤ 1 represents the
energy conversion efficiency performed by the terminal.

We assume that all energy stored in phase 1 of each terminal
is fully utilized in phase 2. Thus, the data transmission power
during phase 2 for terminal j is Pj,ne = Ej,ne/ ((N − ne)T s).

The channel modeling between terminal j and the AP in
phase 2 follows the Rayleigh fading model. Thus, the channel
gain in phase 2 for each terminal j is given by gj = cj ·
10−3/dϕj−AP , where cj has an exponential distribution with
unit mean and dj−AP is the distance between terminal j and
the AP.

During phase 2, terminals transmit their data to the AP
using NOMA. To decode the data, the AP employs SIC that
defines a decoding order. Regarding the various permutation
orders, we define P as the ordered set of all permutations
of the J terminals. The pth element of P is ρp, which is
the pth permutation of the terminals. Additionally, ρip is
the terminal in position i of the pth permutation of P . For
example, suppose there are three terminals identified by
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the letters S, T , and U . Then, the set of permutations P is
{(S, T, U), (S,U, T ), (T, S, U), (T,U, S), (U, S, T ), (U, T, S)}.
Thus, the terminal in the 2nd position of the 3rd permutation
is ρ23 = S.

Thus, we define in Equation (4) rρi
p,n

e,p (ϵ) as the data rate
for the terminal in position i of permutation p when using ne

slots [8], where B is the considered bandwidth, ϵ ∈ [0, 1] is
the fractional error factor (FEF) modeling the interference of
signals imperfectly canceled by the AP.

III. PROBLEM FORMULATION

We formulate the problem with the objective of maximizing
the sum of the data rates of each terminal during phase 2 while
satisfying the QoS constraints, which in this work are defined
as the data rates, Rj , that lower bound the data rates of each
terminal j. We define α as a continuous vector optimization
variable where its component j indicates the transmission
power from the PB to terminal j during phase 1, and xne,p

as a binary optimization variable that is 1 for the optimal ne∗

and p∗ which solve the optimization problem and 0 otherwise.
The optimization problem is modeled as

max
xne,p,α


N−1∑
ne=1

P∑
p=1

J∑
j=1

(rj,ne,p (ϵ) · xne,p)

 , (5a)

s.t.
N−1∑
ne=1

P∑
p=1

(rj,ne,p (ϵ) · xne,p) ≥ Rj , ∀j ∈ J , (5b)

N−1∑
ne=1

P∑
p=1

xne,p = 1, (5c)

1Tα = 1, (5d)
0 ⪯ α ⪯ 1. (5e)

The objective function presented in Equation (5a) is the system
capacity at the AP at the end of phase 2. The constraints
presented in Equation (5b) model the QoS constraints. Con-
straint (5c) models the uniqueness of the solution for the binary
optimization variable, xne,p. Constraint (5d) indicates that the
sum of the transmitted powers during phase 1 is fully utilized.
Constraint (5e) indicates that the power to be transmitted to
each terminal in phase 1 is confined to the interval [0, 1]. Since
the problem includes both binary and continuous optimization
variables, it falls into the category of mixed integer nonlinear
programming (MINLP). Therefore, it is a problem of difficult
resolution, as analyzing only the binary optimization variable,
there are (N − 1) · J ! possible solutions.

IV. PROPOSED LOW COMPLEXITY HEURISTIC METHOD

To solve the problem (5), we have devised a heuristic
method that provides an approximate solution. This approxi-
mation is based on three hypotheses:

• The problem (5) can be decomposed into two subprob-
lems: one integer linear problem (ILP) subproblem with
optimization variable xne,p, and one nonlinear subprob-
lem with optimization variable α.

• The ILP subproblem can be solved based on the power of
the data received at the AP from each of the J terminals.

• The nonlinear subproblem is convex in α.
In the ILP subproblem, we consider the continuous optimiza-
tion variable α to be equal to the vector [1/J, · · · , 1/J ]T ∈
RJ×1. Thus, this subproblem is modeled as follows:

max
xne,p


N−1∑
ne=1

P∑
p=1

J∑
j=1

(rj,ne,p (ϵ) · xne,p)

 , (6a)

s.t.
N−1∑
ne=1

P∑
p=1

(rj,ne,p (ϵ) · xne,p) ≥ Rj , ∀j ∈ J , (6b)

N−1∑
ne=1

P∑
p=1

xne,p = 1. (6c)

Once a suboptimal solution ñe and p̃ forming the solution
xñe,p̃ for the subproblem (6) is found, the following convex
subproblem is solved:

max
α

{
RT (α0) + γ∇T (RT (α0)) (α−α0)

}
, (7a)

s.t. Cα ⪯ d, (7b)

1Tα = 1, (7c)
0 ⪯ α ⪯ 1, (7d)

where γ is a tune parameter, RT (α0) is the system capacity
for α0 and is obtained when summing the data rates of the J
terminals for ñe and p̃. Thus, the objective function (7a) is the
tangent plane of the system capacity at point α0. Constraint
(7b), forming a half-space, is obtained when simplifying the
QoS inequalities rj,ñe,p̃ ≥ Rj . The constraints related to
the variable α from problem (6) are maintained. Note that
problem (7) is convex since the objective function is affine and
the constraints form a polyhedron. To solve problem (6), we
propose a heuristic method with the following assumptions:
the AP has channel state information (CSI) of the channels
for phases 1 and 2, αj = 1/J, ∀j ∈ J , and the FEF, ϵ,
is known. The heuristic method starts with the idea that the
order of terminals performed by the SIC process can be found
by arranging in descending order the powers of the messages
from terminals arriving at the AP, gjP̄j . Although we do not
know the power of each message, we know that the power of
each message depends only on the CSI, as can be observed in
the following equation.

gjP̄j = gj

J∑
k=1

αkP

∣∣∣∣hjh
H
k

∥hH
k ∥

∣∣∣∣2 ,
gjP̄j ∝

(
dj = gj

J∑
k=1

∣∣∣∣hjh
H
k

∥hH
k ∥

∣∣∣∣2
)
. (8)

Note that the constant P and the hypothesis αk = 1/J
do not affect the proportionality of Equation (8). Once the
permutation p̃ is found, we vary ne in Equation (4) and
choose the ne that yields the highest capacity, i.e., the highest
sum of rj,ne,p̃ while respecting the QoS constraints. In this
way, Algorithm 1 presents the pseudo-code of the proposed
heuristic method.

With p̃ and ñe found, the complex problem of Equation (7)
can be solved for the optimization variable α using interior
point methods found in various optimization packages.
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rρi
p,n

e,p (ϵ) =
B · ni

N
log2

1 +
(
Pρi

p,n
e · gρi

p

)/
 ϵ

∑
k≤i−1

(
Pρk

p,n
e · gρk

p

)
︸ ︷︷ ︸

Interferences due to imperfect SIC

+
∑

k≥i+1

(
Pρk

p,n
e · gρk

p

)
+ σ2



 (4)

Algorithm 1: Heuristic method for the problems in
Equations (6) and (7).

Data: K, hj , gj , α0 = (1/J)1, P, ϵ, ∀j ∈ J
Result: p̃, ñe, α̃

1 For all j ∈ J , calculate the expression in Equation (8) and store the
value in the ordered set D;

2 Sort in descending order the elements of D;
3 To construct p̃, relate the elements of D to the position of the

terminals;
4 while ne, i ∈ N do
5 Si =

∑J
j=1 rj,ne,p̃;

6 if ne satisfies Equation (6b) then
7 Store Si in S (The set that stores the capacity of the

system);
8 else
9 Store 0 in S;

10 Set ñe as the position in S which has the biggest value;
11 Set k equal to zero;
12 do
13 Solve for α̃ the problem in Equation (7). Set α0 := α̃;
14 Set k := k + 1;
15 until convergence or k = K;

V. PERFORMANCE ANALYSIS

The system described in Section II has 5 terminals dis-
tributed uniformly within a circular cell with a radius of 10
m, where the AP is located 8 m from its center. Additionally,
the minimum distance between the terminals and both the AP
and the PB is 1 m. The PB, which can have 1, 8, or 256
antennas, transmits at a power of 10 W. The channel bandwidth
is 1 MHz [8]. The frame has 20 slots, the energy harvesting
efficiency is 0.5, the noise power is -104 dBm and the pathloss
exponent is equal to 3. The fractional error factors analyzed
are {0, 10−4, 10−3, 10−2, 2.10−2, 3.10−2, 4.10−2, 5.10−2},
and the required rates are {0, 100, 200, 300, 400, 500} kbps.
To ensure statistical reliability, 1000 Monte Carlo realizations
are conducted.

In the simulations, we compare the results of the combinato-
rial problem (6) using the BB algorithm with the results of the
approximation performed on the mixed problem (5), solved by
our method. These solutions are designated as equal power al-
location and branch-and-bound (EPA-BB) and adaptive power
allocation and heuristic (APA-H), respectively. To assess the
relative merits of the two algorithms, we analyzed several
metrics, including system throughput, i.e., the total data rate of
the terminals at the conclusion of phase 2 and is a key metric
for determining which method optimizes the objective function
(6a) the most. Another indicator is the average number of slots
dedicated to phase 1, ne, providing insight into the relative
energy efficiency of the two algorithms. Finally, we considered
the computational complexity to compare the BB algorithm
with the heuristic method in terms of their search space.

Firstly, we examine the throughput as a function of the FEF
for a requested rate of 300 kbps in Fig. 2 and 3. The curves

for both configurations decline rapidly as the interference
increases due to greater FEF. However, the APA-H configu-
ration outperforms the EPA-BB configuration, especially with
multiple antennas in the PB, enhancing diversity. When the
FEF is zero, the greatest gains are observed, as sorting in
descending order is highly effective, as demonstrated in [12].
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(Heuristic).

Figs. 4 and 5 show the throughput as a function of the
requested data rate for a fixed FEF equal to 0.01. We note that
for a null requested data rate, the EPA-BB generates a higher
throughput. One reason for this is that the null requested rate
imposes a stricter constraint (7b) because the vector d becomes
null. However, as the requested rate increases, we observe that
the APA-H configuration generates higher throughput for more
than one antenna.
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In Figs. 6 and 7, we present the relationship between
the average number of slots for phase 1 and the requested
data rates for a null FEF and for the EPA-BB and APA-H
configurations. For both figures, we note that ne decreases
when we increase the number of antennas. One explanation
for this is that increasing the number of antennas enhances
the system’s diversity, meaning more copies of the transmitted
signal reach the terminals, thereby increasing the received
power at each terminal. Consequently, there is a reduction in
the number of slots used for phase 1, because more power
reaches the terminals due to the number of antennas at the PB.
In Fig. 7, we observe a reduction in the amount of ne compared
to Fig. 6. This indicates that adaptive power allocation for the
terminals increases the energy efficiency of the PB.
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Finally, with regard to computational complexity, the most
computationally demanding scenario for the BB method is
the exhaustive search case, as demonstrated in [13]. For the
heuristic method, the most unfavourable scenario occurs when
it is necessary to examine all possible values of ne during the
K iterations to solve the linear problem 7 using the simplex
method, which has a worst-case complexity of 2d where d
is the number of variables, as stated in [14]. The worst-case
scenario for both methods is presented in Table I.

TABLE I
ALGORITHM COMPUTATIONAL COMPLEXITY.

Algorithm Computational complexity

EPA-BB O ((N − 1)J !)

APA-H O
(
K(N − 1)2J

)
To illustrate, if we consider seven terminals, N = 20,

and convergence occurring in K = 20 iterations, the APA-H
heuristic has a computational complexity that is 49.21% lower
than that of the EPA-BB algorithm.

VI. CONCLUSIONS

In this article, we present a scenario involving EH in a
WPCN-NOMA network. The evaluated scenario is composed
by a multiple-antennas PB, serving multiple terminals employ-
ing EH in phase 1 and an AP performing NOMA with imper-
fect SIC in phase 2. Thus, we propose a heuristic method that
maximizes data throughput subject to QoS constraints for all
terminals through adaptive power allocation. The simulations
results indicated that, for multiple antennas in the PB, the
power allocation performed by the heuristic method generated
higher throughput than the BB method, which did not perform
any power allocation. Furthermore, it was observed that the
proposed heuristic method increase energy efficiency while
reduces computational complexity when compared to the BB
method.
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