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CVQKD Reconciliation Based on Distributional
Transform and Slepian-Wolf Coding

Rávilla R. S. Leite and Francisco M. de Assis

Abstract— In this article, we present an information reconcili-
ation protocol designed for CVQKD based on the Distributional
Transform for variable quantization and LDPC Slepian-Wolf
coding. The decoding employed a modified Bit-Flipping algorithm
to recover the error vector E between the correlated binary
sequences of Alice and Bob. Numerical results were obtained by
applying an LDPC code with a rate of 1/2, in conjunction with
Bit-Flipping and Sum-Product decoding. The results encourage
the application of the technique using LDPC codes optimized for
CVQKD applications.

Keywords— CVQKD, LDPC Codes, Distributional Transform,
Bit-Flipping.

I. INTRODUCTION

Quantum Key Distribution (QKD), initially proposed by
Bennett and Brassard [1], aims to enable the sharing of secret
information between two distant and legitimate parties, Alice
and Bob, by providing a key with unconditional security
against an eavesdropper, Eve, relying on fundamental princi-
ples of quantum physics, especially the uncertainty principle
and the no-cloning theorem [2], [3].

The QKD protocol can be implemented in two main ways:
DVQKD (Discrete-Variable QKD) and CVQKD (Continuous-
Variable QKD). In DVQKD, the key information is encoded
through the phase or polarization of single photons [1], [4],
[5] and single-photon detection is performed on the receiver
side. In contrast, CVQKD encodes the key information in
the quadratures of the electromagnetic field of non-orthogonal
coherent states, and the signals measured by Bob are con-
tinuous [6], [7], [8], [9]. CVQKD offers better prospects
for practical implementation since it requires standard optical
communication technology instead of single-photon detection
and provides higher secret key rates than DVQKD [8], [3], and
can also utilize continuous (Gaussian) or discrete modulations.

Gaussian modulation protocols occur in four main stages
[10], [8]: (1) state distribution and measurement; (2) parameter
estimation; (3) information reconciliation; and (4) privacy
amplification. This work focuses on the information reconcili-
ation stage, where the quantization of the continuous variables
remaining after discarding the values measured by Bob with
the wrong bases and error correction occurs through an au-
thenticated classical channel, assumed to be error-free. After
quantization, each generated subchannel can be separately
treated with multi-level coding (MLC), applying LDPC codes
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according to the channel capacity to perform error correction
close to Shannon’s capacity [11], [12], [3].

The final secret key rate (SKR) can be written as ∆I =
βIAB − χBE , where β is the reconciliation efficiency, which
depends on the quantizantion and error correcting efficiency,
IAB is the the classical mutual information between Alice
and Bob, and χBE is the Holevo information between Bob
and Eve, i.e. the maximum amount of information about the
raw key accessible by Eve [3]. Based on these concepts, it is
possible to see how reconciliation efficiency affects the secret
key rate at the end of the protocol.

This paper is structured as follows: Section II presents
the fundamental concepts of the quantization technique used
and some parameters obtained through simulations. Section
III describes the application of Slepian-Wolf coding and Bit-
Flipping-based decoding to the first two channels obtained
from the quantization of the raw key’s continuous variables. In
Section IV, the results of Bit-Flipping and Belief-Propagation
decodings for the sequences of the first quantization channel,
encoded by the same LDPC matrix in a reverse reconcilia-
tion scheme, are compared. Finally, Section V presents the
conclusions and future work.

II. QUANTIZATION OF VARIABLES BY THE
DISTRIBUTIONAL TRANSFORM

After the quantum stage, Alice and Bob communicate
through an authenticated classical channel, assumed to be
error-free, to perform error correction and privacy amplifi-
cation. The application of error-correcting codes only takes
place after the quantization of the continuous values of the
raw keys, which are those resulting after discarding the values
that Bob measured with the wrong bases (sifting phase)
from both sequences. Thus, the raw keys of Alice and Bob
are two correlated Gaussian sequences, A = A1, · · · , An

and B = B1, · · · , Bn, respectively, with mutual information
greater than 0, i. e., I(A,B) > 0 [13], [14]. For the continuous
values of the raw key, N realizations of A ∼ N (0, 1) were
generated, corresponding to Alices’s modulated states, as well
as N realizations of Z ∼ N (0, σ2

Z), so that B = A+Z, since
a quantum channel with additive Gaussian noise was assumed
[15], [11].

Although the SEC (Slice Error Correction) [13], [12] or
MD (Multidimensional) Reconciliation [16], [17], [15] are
more commonly used to extract bit sequences from continuous
valued data, in this work, the quantization of the raw key
values was performed using the protocol proposed by Araújo,
Assis and Albert in [18] based on an important Lemma from
arithmetic coding [19]:
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Lemma 1: Let V be a random variable with a continuous
distribution function FV , define U = FV (V ). So, U is
uniformly distributed on [0, 1].

This Lemma is known in Copula Theory as Distributional
Transform and allows to transform a random variable by
its cumulative distribution function, leading to a uniform
distribution on the unit interval [11]. With this assumption
and consideering that the bits in the binary expansion of a
random variable with uniform distribution on [0, 1] are inde-
pendent and Bernoulli ( 12 ), Alice can calculate X = Φ(A) ∼
unif[0, 1], and similar for Bob, Y = Φ(B) ∼ unif[0, 1] to
map the raw key elements on the unit interval, and after apply
the binary expansion to the resulting values with ℓ bits of
resolution. Dias and Assis called this technique Distributional
Transform Expansion, DTE [11], and each resolution bit
induces a BSC channel of the type Dj(X1), ...,Dj(Xn) and
Dj(Y1), ...,Dj(Yn), for j = 1, . . . , ℓ.

Let a be a realization of the Gaussian random variable
A and x = Φ(a) ∈ [0, 1] the cumulative probability of a,
a realization of X , the first digit in the binary expansion
(D1(Xi)) announces if x < 1

2 or x ≥ 1
2 , or in terms of the

continuous values, if a < 0 or a ≥ 0. This threshold can be
observed in Figure 1 (in terms of the continuous value of a)
and in Figure 2 (in terms of CDF) named as "Threshold 1". To
get the value of the second bit D2(Xi), the intervals referring
to D1(Xi) must be divided into two parts, generating four
subintervals in the unit interval, as illustrated in Figures 1 and
2 as "Threshold 2" and "3". Looking at just the first half of
the graph, we have that if Φ(Ai) ∈ [0, 1/4), D2(Xi) = 0 and
if Φ(Ai) ∈ [1/4, 1/2), D2(Xi) = 1. Similarly for the second
half of the unit interval.

Fig. 1. Probability density function of the Normal Distribution. Threshold 1
corresponds to Φ−1(1/4) and Threshold 2 to Φ−1(3/4).

For the following channels, the intervals mentioned above
must be subdivided by 2 for each bit of resolution you want
to add, resulting in 2ℓ subintervals. In this way, the decision
regions become narrower and narrower, making the probability
of inversion in the less significant channels greater. In [18] the
probability of error for the first 6 quantization channels as a
function of SNR is shown.

We quantized 1920 realizations of X and Y , with 3-bit
resolution, and calculated the capacities of the induced sub-
channels, based on the probability of error between X and
Y , as shown in Table I. Note that induced sub-channels

Fig. 2. Cumulative distribution function of the Normal Distribution. Thresh-
old 1 corresponds to Φ(a) = 1/4 and Threshold 2 to Φ(a) = 3/4.

have different capacities, namely Cj = 1 − H(αj) where
H(x) = −x log(x)− (1− x) log(1− x) stands for the binary
entropy parameter α ∈ (0, 1). In encoding the sequences of
each subchannel, a code with a rate compatible with this
capacity, i.e., less than Cj , should be used. The block-length,
in turn, must be compatible with the length of the H matrix
used.

TABLE I
CAPACITY OF THE FIRST THREE SUB-CHANNELS OBTAINED WITH

QUANTIZATION.

SNR (dB) Channel
Capacity (1)

Channel
Capacity (2)

Channel
Capacity (3)

0 0.1881 0.0216 0.0034
4 0.3212 0.0480 0.0074
8 0.4696 0.1250 0.0165
12 0.6033 0.2736 0.0492
16 0.7123 0.4422 0.1576
20 0.7975 0.5905 0.3316
24 0.8573 0.7040 0.4967
28 0.9019 0.7921 0.6349
32 0.9328 0.8544 0.7390
36 0.9543 0.8989 0.8169
40 0.9693 0.9315 0.8730

III. BIT-FLIPPING DECODING FOR THE FIRST TWO
SUB-CHANNELS OF QUANTIZATION

Here, the first two sub-channels obtained after quantization
were used in the simulations. In the first channel, we have
X = (D1(X1), ...,D1(Xn)) and Y = (D1(Y1), ...,D1(Yn)).
In the simulation of the second channel, we have X =
(D2(X1), ...,D2(Xn)) and Y = (D2(Y1), ...,D2(Yn)). Figure
3 illustrates the average distance between X and Y for the two
channels, after 1000 executions of the algorithm, as a function
of SNR. Figure 4 shows the histograms of the number of
occurrences of these distances for three SNR values belonging
to the region where the discrepancy between the two channels
is greatest, obtained after 1000 runs of the algorithm. The
occurrences were grouped according to 20 distance intervals.

Once the capacity of each sub-channel has been calculated
as a function of the desired SNR, it is possible to choose
the LDPC matrix to be used in the information reconciliation.
Considering a reverse reconciliation scheme, in which Alice
needs to correct her sequence to match Bob’s, simulations
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Fig. 3. Average Hamming distance between X and Y as a function of SNR,
before decoding, for channels 1 and 2, after 1000 executions of the algorithm.

Fig. 4. Histograms with the Hamming distances between X and Y grouped
into 20 intervals, based on SNR, for channels 1 and 2, after 1000 executions
of the algorithm.

were performed with Slepian-Wolf coding [20], [2] and a
modification of the Bit-Flipping algorithm, proposed in [21]
(submitted for publication), for the binary sequences of the
first two channels of interest.

In Slepian-Wolf coding [20], [22], Bob computes S(Y ) =
Y HT and sends it to Alice through an authenticated classical
channel, assumed to be error-free. It is important to note that
in this type of analysis, thermal noise and other losses that
may be imposed by the classical channel are irrelevant, and
neither X nor Y are codewords. Alice can then reconstruct
Bob’s sequence from X and S(Y ). In [20] a modification
of the sum-product algorithm, based on belief propagation, is
applied. This modification includes the term (1− 2sj), where
sj corresponds to the j-th component of Bob’s syndrome,
in the calculation of the likelihood ratios sent by the parity
nodes to Alice’s variable nodes. In this decoding process,
the algorithm modifies Alice’s sequence so that it matches
Bob’s. Decoding ends when the syndrome of the new sequence
matches Bob’s syndrome or a maximum number of iterations
is reached.

In the modification of the Bit-Flipping algorithm presented
in [21] (submitted for publication), the goal is to reconstruct
the error vector between X and Y from the syndrome S(E) =
S(X)⊕ S(Y ), and then, add it to Alice’s sequence to match
Bob’s. The proposed modification to the algorithm is based
on flipping the bits of the null sequence that are connected
to the maximum number of errors in S(E) (with value 1).
The decoding stops when a sequence with a syndrome equal
to S(E) is obtained or a maximum number of iterations is
reached.

The LDPC code used is described by its parity-check matrix
H , with dimensions 960×1920 and rate r = 1/2, of irregular
type and quasi-cyclic, available in the G.hn standard [23]. The
sequences X e Y had a length of N = 1920, compatible
with the length of the parity-check matrix used. Figure 5
shows the success rate for the two channels. A decoding is
considered successful when a vector, starting from the null
vector, is obtained with a syndrome equal to S(E). Since
the same LDPC matrix was used to encode both channels, it
can be seen in Table I that only between 8 and 12 dB does
the channel capacity exceed the code rate (1/2), so successful
decodings begin to appear in this range. In the second channel,
the capacity only exceeds the code rate between 16 and 20 dB,
so no successful decodings occur before this range.

Fig. 5. Success rate after decoding as a function of SNR, for channels 1
and 2.

Figure 6 presents the average number of iterations for the
algorithm to converge as a function of SNR, that is, for a
successful decoding to occur. A gap between the curves is
observed, due to the fact that in the second channel, successful
decodings begin to occur only at higher SNRs, along with an
increase followed by a subsequent decrease in the number of
iterations for convergence. This may occur because, at lower
SNRs, the algorithm finds an error vector far from the desired
one, but with the same syndrome. At higher SNRs, around 40
dB, the average number of iterations is also lower because the
difference between X and Y is small.
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Fig. 6. Average number of necessary iterations to match the syndromes
S(X) and S(Y ), in channels 1 and 2.

IV. COMPARISON BETWEEN BIT-FLIPPING AND
SUM-PRODUCT DECODING

Lastly, the simulations of channel 1 were replicated, fol-
lowing Slepian-Wolf coding, using the same LDPC matrix
as before, now applying the Sum-Product algorithm with
the modification presented in [20] for decoding. A total of
500 executions of the modified Bit-Flipping and Sum-Product
algorithms were carried out for eight SNR values, starting from
12 dB, values for which the Channel Capacity exceeds the
code rate. The average number of successful decodings for
both algorithms (Figure 7), as well as the average number of
iterations for convergence (Figure 8) and the distance between
X and Y after decoding (Figure 9) were obtained.

Fig. 7. Success rate after Bit-Flipping and Sum-Product decodings, as a
function of SNR, for channel 1.

The success rate for the Bit-Flipping algorithm was higher
up to 35 dB, although this algorithm requires a greater number
of iterations for convergence. However, the computational
cost of Bit-Flipping is much lower than that of the Sum-
Product algorithm, so the number of iterations alone does
not imply greater decoding speed. Thus, further studies into
the application of specific LDPC matrices for CVQKD recon-

ciliation according to the proposal presented in [21] become
interesting, especially from the perspective of reducing the
computational cost of decoding, in order to improve the recon-
ciliation efficiency of the CVQKD protocol. However, a deeper
investigation into the frame error rate (FER) between the
blocks of Alice and Bob’s sequences used in the reconciliation
is also needed. The Sum-Product algorithm showed greater
proximity between the sequence obtained after decoding and
Y .

Fig. 8. Average number of necessary iterations to match the syndromes
S(X) and S(Y ), after Bit-Flipping and Sum-Product decodings, for channel
1.

Fig. 9. Difference between the new sequence after Bit-Flipping and Sum-
Product decodings and Y .

V. CONCLUSIONS

In this article, the variable quantization technique proposed
in [18], based on the Distributional Transform, was applied
together with LDPC Slepian-Wolf coding [20], [22]. In decod-
ing, a modification on the Bit-Flipping algorithm was used to
reconstruct the error vector between Alice and Bob from the
null vector and the difference between the syndromes S(X)
and S(Y ).

Simulations were conducted separately for the first two
channels obtained after quantization, using an LDPC matrix
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with a rate r = 1/2, and the numerical results were graphically
presented. Additionally, simulations with the first channel
were performed using two different decoding algorithms: the
Modified Bit-Flipping and the Sum-Product as presented in
[20], in order to evaluate some of the main performance
differences between the two techniques, since the Bit-Flipping
algorithm has a much lower computational cost than the other.

The Bit-Flipping algorithm applied to the proposed error
vector reconstruction from the null vector showed a higher
success rate than the Sum-Product algorithm in the 10 to 15
dB range, despite requiring a greater number of iterations for
convergence. However, the post-decoding sequence obtained
with the Sum-Product algorithm exhibited fewer errors relative
to Y . Nonetheless, the results encourage further research on
the feasibility of applying Bit-Flipping-based reconciliation
and error vector reconstruction to CVQKD protocols as a
way to reduce the computational cost of decoding. To do
this, it will be necessary to use LDPC matrices that are more
appropriated for CVQKD protocols, i.e., with lower rates and
larger dimensions.
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