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Autoencoders Beat PCA for Low-Dimension
DGA-based Fault Diagnosis of Power Transformers
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Abstract— Energy utility companies are investing in advanced
monitoring systems using efficient data processing methodologies
to mitigate the impacts of power transformer malfunctions on
supply stability. Reducing data processing volume is crucial for
achieving efficiency. In this context, our contributions include
(i) proposing a fault diagnosis system that maintains high
performance even under severe dimensionality reduction, (ii) in-
troducing two Autoencoder structures, (iii) conducting pioneering
tests of the Adafactor optimizer in dissolved gas analysis using
Autoencoders, and (iv) comparing our solution with Principal
Component Analysis (PCA), one of the most well-established
techniques in the literature. Results confirm that our proposed
system outperforms PCA, particularly in scenarios requiring
severe dimensionality reduction.

Keywords— Machine learning, Autoencoders, Dimensionality
reduction, DGA, Fault diagnosis.

I. INTRODUCTION

Instability in energy supply due to malfunctioning equip-
ment in electrical substations has encouraged energy utilities
to work for a more stable and environmentally sustainable
electricity supply. Faults in vital equipment, such as power
transformers, can reduce the efficiency of the electrical system
or render it inoperable [1]. The concern to prevent such
scenarios motivates distribution companies to invest in moni-
toring systems and data processing, focusing on solutions for
diagnosing transformer faults [2].

Dissolved Gas Analysis (DGA) relies on seven types of
gases to diagnose the condition of power transformers: hydro-
gen (H2), methane (CH4), ethane (C2H6), ethylene (C2H4),
acetylene (C2H2), carbon monoxide (CO), and carbon dioxide
(CO2) [3]. Different circumstances generate these gases. The
corona effect produces H2, oil decomposition at low tem-
peratures produces CH4 and C2H6, and oil decomposition at
high temperatures produces C2H4. Electric arcs produce C2H2,
while insulation paper decomposition produces CO and CO2.

Traditionally, DGA-based fault diagnosis of power trans-
formers used interpretation techniques [4]. But most mod-
ern, state-of-the-art DGA solutions employ Machine Learning
(ML) techniques [5]. Efficient decision-making mechanisms
include in their structures architectures such as Support Vector
Machines (SVM) [5], k-Nearest Neighbor (k-NN) [6], and
Artificial Neural Networks (ANN) [7].
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However, despite the advancements in ML, practical chal-
lenges still affect monitoring systems. Companies face high
operating costs regarding the installation and maintenance
of these systems, particularly in terms of data processing.
Therefore, there is a practical demand for methods that reduce
the amount of data. Furthermore, some gaps in fault diagnosis
strategies remain unexplored, especially in the phase before
the decision-making stage, where techniques to reduce data
dimensionality can be applied.

This work is motivated by the practical need to reduce
the data dimensionality that feeds the decision-maker stage
of a system for fault diagnosis in power transformers. This
system is under development as part of a research project
that entails cooperation between the University of Campinas
and the Eldorado Research Institute. Our key objective is
to guarantee a good balance between performance and high
dimensionality reduction. To this end, this study proposes
a modern approach based on Autoencoders (AEs) [8] and
ML models for fault diagnosis via DGA. We use AEs due
to their potential to enhance class separability by learning
intrinsic data patterns. For this task, we propose two variants
of AE architectures: one with intermediate layers and the other
without. On the other hand, for the decision-maker stage,
we choose models whose low computational complexity con-
tributes to the system structure. For this purpose, we employ
the ML models SVM, k-NN, and Extreme Learning Machine
(ELM) [9]. This study has the following main contributions:
(i) proposing a fault diagnosis system that maintains high
performance even under severe dimensionality reduction; (ii)
introducing two AE architectures aimed at low-complexity
DGA data processing; (iii) conducting pioneering tests of
the Adafactor optimizer [10] in fault diagnosis using AEs;
and (iv) establishing a fair comparison between the proposed
AE-based method for fault diagnosis and a classical, well-
established dimensionality reduction technique, namely Princi-
pal Component Analysis (PCA). Through this comparison, we
seek to answer critical questions: Can the proposed AE-based
approach preserve system performance under severe dimen-
sionality reduction? Can it compete with a widely recognized
technique like PCA? As confirmed in Section IV, the AE-based
approach indeed surpasses PCA in most performance metrics
when severe dimensionality reduction is pursued.

The remainder of this paper is organized as follows. Section
II presents the proposed approach for fault diagnosis in power
transformers. Section III presents the performance metrics.
Section IV discusses the results. Finally, Section V outlines
the main conclusions.
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Fig. 1. Overview of the proposed system for fault diagnosis in power transformers. The system begins with (a) the concentrations of seven gases as
input. Next, (b) the data treatment stage processes the input data. Then, (c) dimensionality reduction is performed using either AEs or PCA. Finally, (d) the
decision-maker stage uses ML models to provide the fault diagnosis.
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Fig. 2. Proposed structure for Autoencoder 2 (AE2). Autoencoder 1 (AE1)
has a single hidden layer (bottleneck).

II. PROPOSED APPROACH FOR FAULT DIAGNOSIS IN
POWER TRANSFORMERS

According to Fig. 1, our proposal encompasses a complete
system for fault diagnosis in power transformers. At first, as
per Fig. 1(a), the gas concentrations feed the input of this
system. In this phase, the system uses m samples of the
N gas concentrations as input vectors: g1,1 · · · g1,m ≜ g1,
g2,1 · · · g2,m ≜ g2, gN,1 · · · gN,m ≜ gN . As depicted in
Fig. 1(b), the system initiates the data treatment phase. As
mentioned in [6], the magnitude order is one of the features
highly informative regarding gas concentrations. Re-scaling
the data using a logarithmic transformation is one approach
to providing the AI model with information on variations
in magnitude order. Then, given a sample g, this procedure
generates the new sample z through z ≜ log10(g). In addition
to this procedure, we apply standardization to avoid conver-
gence problems with AI models, ensuring numerically stable
operations. In this case, we use the following normalization
procedure: x ≜ (z − E[z])/

√
V[z], where E[·] is the expecta-

tion operator and V[·] is the variance operator. This way, we
obtain x1, x2, x3, · · · , xN . Then, the system sends the pro-
cessed data to the stage dedicated to dimensionality reduction,
according to Fig. 1(c). Here, we propose the implementation
of AEs due to their capability to enhance separability between

classes insofar as they learn patterns intrinsic to the data. At
this stage, we introduce two variants of AE structures. In the
structure outlined in Fig. 2 (Autoencoder 2, AE2), we propose
an AE with a bottleneck (the hidden layer for dimensionality
control) and two additional layers, one positioned between
the input layer and the bottleneck and another between the
bottleneck and the output layer. Both representations consider
a number N of neurons for the input layer. Autoencoder 1
(AE1, not shown) is a variant of AE2 without these two
additional layers. Furthermore, in both AEs, the dimensionality
reduction, reflected in the size of the bottleneck (denoted
by λ), depends upon the extent to which we aim to compress
the data dimensionality. For AE1, λ can range from N to one,
and for AE2, from N − 1 to one. A smaller value indicates a
more pronounced reduction in dimensionality.

Fig. 3 illustrates the dimensionality reduction procedure
for both AEs, where we plug the autoencoder bottleneck
directly (without decoder) into the decision-maker model. In
this manner, the AE feeds the decision-maker stage with the
transformed data (with dimensionality λ). It is worth mention-
ing that, in this study, we tested two different optimizers for
the AEs, the well-known Adam and one of its current rivals
— the Adafactor. The dimensionality reduction procedure via
AEs is detailed in Algorithm 1. For benchmarking purposes,
we also tested the classic PCA as an alternative technique to
AEs. In this case, we varied the data dimensionality (λ) from
the maximum (seven) to the minimum (one) to evaluate this
technique under severe conditions of dimensionality reduction.

Next, according to Fig. 1(d), the transformed data feeds
the decision-making stage. Here, we employ ELM, k-NN,
and SVM models, i.e., models whose low computational
complexity contributes to the system structure. The process of
optimizing the ML models is described in Algorithm 2. In the
end, the system diagnoses the status of the power transformer
as faulty (F) or normal (N). To improve the performance of the
models, we can find some of their optimal hyperparameters.
In the ELM model, we can seek the appropriate number of
neurons in the hidden layer for the ELM model, hELM

(optimal).
Similarly, we can explore the optimum number of neighbors
for the k-NN, hk-NN

(optimal). In the SVM, we can search for
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Fig. 3. Dimensionality reduction procedure using Autoencoders.

Algorithm 1 Approach for dimensionality reduction via AEs
Input: Desired AE architecture (AE1 or AE2), bottleneck size

(λ), optimizer (Adam or Adafactor), number of training
epochs (ψ), amount of gases involved in monitoring via
DGA (N ), treated data (x1, x2, · · · , xN ).

Output: {u1,i, u2,i, u3,i, · · · , uλ,i}qi=1 and {u1,i, u2,i, u3,i,
· · · , uλ,i}pi=1.

1: first method:
Split the samples of treated data (x1, x2, · · · , xN ) into a
set of q training samples: {x1,i, x2,i, x3,i, · · · , xN,i}qi=1,
and a set of p test samples: {x1,i, x2,i, x3,i, · · · , xN,i}pi=1.

2: second method:
Select the AE structure (AE1 or AE1).

3: third method:
Load the parameters N , λ, ψ, and optimizer (Adam or
Adafactor) for the selected AE structure.

Apply dimensionality reduction:
Control the size of the bottleneck via the λ value.

4: fourth method:
Train the selected AE employing the loaded parame-
ters and applying the training set {x1,i, x2,i, x3,i, · · · ,
xN,i}qi=1 to the input and output of the model.

5: fifth method:
Collect the set of transformed data from the bottleneck,
i.e., {u1,i, u2,i, u3,i, · · · , uλ,i}qi=1.

6: sixth method:
Testing the AE using the test set {x1,i, x2,i, x3,i, · · · ,
xN,i}pi=1.

7: seventh method:
Collect the set of transformed data from the bottleneck:
{u1,i, u2,i, u3,i, · · · , uλ,i}pi=1.
return {u1,i, u2,i, u3,i, · · · , uλ,i}qi=1 and {u1,i, u2,i,
u3,i, · · · , uλ,i}pi=1.

the optimum value for the regularization hyperparameter C,
hSVM

(optimal). For this purpose, we apply the Grid Search with the
K-fold Cross-Validation technique [11].

III. NUMERICAL RESULTS AND DISCUSSION

A. Evaluation Metrics

This work uses accuracy [9], F1-Score [11], and the Jac-
card index to evaluate the proposed system. The joint use

Algorithm 2 Optimization of Decision-Maker Models
Input: Selected ML model (θ), set of j candidates hyperpa-

rameters for the ML model: {hθi }
j
i=1, {u1,i, u2,i, u3,i,

· · · , uλ,i}qi=1, {u1,i, u2,i, u3,i, · · · , uλ,i}pi=1, number of
folds (K).

Output: Fault Diagnosis
1: first method:

Load θ and load {hθi }
j
i=1.

2: second method:
Split the q samples of {u1,i, u2,i, u3,i, · · · , uλ,i}qi=1 in
K folds and apply the Grid Search with K-fold Cross-
Validation to obtain the optimal hyperparameter hθ(optimal).

3: third method:
Train the optimized model with hθ(optimal) and test them
with {u1,i, u2,i, u3,i, · · · , uλ,i}pi=1.
return Fault Diagnosis

of these metrics ensures a holistic comprehension of the
results, providing a more robust and fair analysis. Accu-
racy offers a comprehensive notion of the success rate re-
garding the approach; we use this metric as accuracy =
(TP + TN)/(TP + FP + TN + FN), where TP is true-positive,
TN is true-negative, FP is false-positive, and FN is false-
negative. F1-Score provides a more balanced view of the
model’s performance, especially if there is an imbalance
between the classes. We employ F1-Score as per F1-Score =
(2× TP)/[2× TP + 1× (FN + FP)]. Jaccard index is defined
as Jaccard = (TP)/(TP + FP + FN). The Jaccard index mea-
sures the similarity between model predictions and expected
values [12], useful for overlapping classes, and it ranges from
0 (no match) to 1 (full match).

B. Results and Analysis

Most DGA studies use few samples due to the limited
availability of data in the literature, as in [1], [13], [14]. The
present work employs dataset fusion to minimize this situation.
We implement a fusion of the databases from [3], [4], [13]–
[17]. As a result, we obtain a partial discharges category (PD)
with 209 samples, an energy discharges category (D) with 206
samples, a thermal faults category (T) with 90 samples, and a
normal status category (N) with 46 samples. Subsequently, we
relocate these samples into normal (N) or fault (F) for binary
classification.

It is worth mentioning that, from the fusion of samples,
the proposed approach sets 70% of the data for training and
30% for testing, where, in Algorithm 2, only the training
set takes part in the Grid Search with the K-fold Cross-
Validation. For each dimension (seven to one), there is a search
for hyperparameters considering the dimensionality reduction
technique (PCA or AEs), the ML model used (θ), and its set
of associated hyperparameters ({hθi }

j
i=1). For each hyperpa-

rameter search, we used the following sets associated with
the models: {hELM

i }4i=1 = {1, 10, 100, 1000}, {hSVM
i }4i=1 =

{1, 10, 100, 1000}, and {hk-NN
i }10i=1 = {1, 2, 3, . . . , 10}. These

values were chosen to ensure the convergence of the search
without significantly compromising computational time. For
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Fig. 4. Average accuracy for SVM, k-NN, and ELM models.

brevity, we present the optimal hyperparameters corresponding
to the winning models, i.e., the optimal hyperparameters
whose models reach the best results (the highest percentage
points advantages). From Algorithm 2, we find hSVM

(optimal) = 1,
hk-NN

(optimal) = 5, and hELM
(optimal) = 100. In addition, for both

autoencoders using both optimizers, we employ a learning
rate according to [10] and 50 training epochs, where each
epoch takes approximately 7 milliseconds. It is also worth
noting that all results derive from 50 iterations, with the
average evaluation metrics being shown in Figs. 4, 5, and 6.
In interpreting these findings, we equate a variation of under
0.5 percentage point between the methodologies as a tie. In
this study, all the decision-maker models presented an average
training time of less than 0.004 s.

Fig. 4 depicts the average accuracy results. When employing
ELM, AEs tie with PCA for dimensionalities λ = 7 and
6. However, the AE approach prevails for the remaining λ
values, 5, 4, 3, 2, and 1. Moreover, for ELM, our proposed
method outperforms PCA significantly in scenarios with severe
dimensionality reduction (λ = 3, 2, and 1), achieving the
best result for λ = 2, where AE2-Adam exhibits the highest
advantage, with 3.61 percentage points. Utilizing k-NN, the
AE approach outperforms PCA once again in scenarios with
severe dimensionality reduction, λ = 3, 2, and 1, and ties when

Fig. 5. Average F1-Score for SVM, k-NN, and ELM models.

λ = 4 and 7. Here, for k-NN, we achieve the best result in
the extreme case, λ = 1, where AE2-Adam shows the highest
advantage, with 2.41 percentage points. When using SVM, the
AE approach outperforms PCA for λ = 6, 2, and 1. The AE
aproach ties for λ = 7, 5, 4, and 3. In this case, the AE1-
Adam approach achieves the best result for λ = 1, with a 2.41
percentage point advantage.

Fig. 5 displays the results for the average F1-Score. In
this context, when employing ELM, AEs tie with PCA for
dimensionalities λ = 7 and 6, while outperforming it for λ =
5, 4, 3, 2, and 1. Our approach achieves the best result for λ =
2, where AE1-Adam exhibits the highest advantage, with 5.75
percentage points. For k-NN, the AE approach ties with PCA
for λ = 4 but prevails for λ = 3, 2, and 1, where the best result,
via AE2-Adafactor and λ = 1, shows an advantage of 2.84
percentage points. Regarding SVM, the proposed approach ties
with PCA for λ = 7, 5, and 4, but has superior performance
for λ = 6, 3, 2, and 1, where the best result, via AE1-Adam
with λ = 1, exhibits an advantage of 3.49 percentage points.

Fig. 6 illustrates the results for the average Jaccard index.
Through ELM, the proposed method prevails for λ = 5, 4,
3, 2, and 1, where our approach achieves the best result for
λ = 2 via AE2-Adam, with a notable 6.15 percentage point
advantage over PCA. For k-NN, our proposed method demon-
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Fig. 6. Average Jaccard index for SVM, k-NN, and ELM models.

strates superiority for λ values of 3, 2, and 1, showcasing a
4.1 percentage point advantage when employing AE2-Adam.
Employing SVM, our approach wins once again for λ = 3,
2, 1, under severe dimensionality reduction. In this case, for
λ = 1, AE1-Adam achieves a 4.01 percentage point advantage
over PCA.

Finally, when evaluating the extreme case (λ = 1), among
all the results, the approach via AE with k-NN appears with
the highest accuracy, F1-Score and Jaccard values: 92.77%
with AE2-Adam, 90.68% with AE2-Adafactor, and 0.8652
with AE2-Adam, respectively.

IV. CONCLUSION

In this manuscript, we presented an approach for diag-
nosing faults in power transformers via DGA, combining
dimensionality reduction using AEs with ML models. We
introduced two AE structures, conducted a pioneering test of
the Adafactor optimizer in DGA using AEs, and compared
our strategy with PCA. As validated in Section III, the AE
methodology demonstrates robustness, particularly in scenar-
ios of severe dimensionality reduction (λ = 1, 2, and 3), where
it consistently exhibits the most substantial percentage point
advantages across all metrics compared to PCA. Specifically,
AE1 presents these advantages over PCA for accuracy and

Jaccard index through Adam optimizer, SVM, and λ = 1, and
for F1-Score via ELM with λ = 2. In turn, AE2 shows such
advantages for accuracy and Jaccard index through Adam,
ELM, and λ = 2, and for F1-Score via Adafactor, kNN, and
λ = 1. In the extreme case (λ = 1), our AE-based approach
with k-NN achieves the highest values in accuracy, F1-Score
and Jaccard index: 92.77% accuracy with AE2-Adam, 90.68%
F1-Score with AE2-Adafactor, and 0.8652 Jaccard index with
AE2-Adam. Overall, we demonstrated that autoencoders beat
PCA under severe dimensionality reduction while exhibiting
comparable performance under slight to moderate dimension-
ality reduction. These findings underscore the potential of
autoencoders as versatile tools for enhancing the accuracy of
DGA-based fault diagnosis in power transformers.
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