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Abstract— This paper proposes a tensor-based parametric
channel estimation technique for IRS-assisted communication
systems with time-varying channel parameters. We exploit the
multidimensional structure of the received signal by developing
a 3rd-order PARAFAC tensor model that is solved by employing
the iteratively ALS algorithm. Our simulation results show that
the proposed approach provides enhanced performance in terms
of NMSE of the concatenated channel compared to the competing
solutions by capitalizing on the intrinsic tensor structure of the
received signal without increasing the computational complexity
of the channel estimation.
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I. INTRODUCTION

With the increasing number of users due to the
implementation of the fifth generation (5G) and beyond fifth
generation (B5G), there is a growing demand for network
resources in terms of either energy or spectrum usage [1].
Most of the recent works concentrate on solving problems
of cooperative relaying, beamforming design, or resource
allocation either at the user equipment (UE) or at the base
station (BS) [2], [3]. However, the propagation environment
remains an unknown factor not accounted for in formulating
these problems [4].

In this context, intelligent reflecting surface (IRS) has been
explored as one of the possible technologies for integration
into B5G and sixth generation (6G) wireless networks aimed at
realizing crucial functionalities such as system integration and
data transmission [5]. This interest arises from the potential of
IRS to enhance network coverage and establish an intelligent
propagation environment [6]–[8]. An IRS is a two-dimensional
panel composed of many passive reflecting elements and
a smart controller, which controls the reflecting elements
to independently change the phase shifts of impinging
electromagnetic waves to smartly maximize the signal-to-noise
ratio (SNR) by adding them constructively or destructively
at the intended receiver [4]. As IRS operates as a passive
structure, its power consumption primarily arises from the
operation of the smart controller, which lacks the capability
to process or amplify incoming signals.

Since the IRS usually is composed of passive elements,
it is unable to employ signal processing techniques to the
impinging signals, meaning that channel estimation techniques
must be carried out at the end nodes of the network, either
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the BS or the UE, by transmitting pilot signals according to
a training protocol. Several works have already addressed this
problem, as the ones mentioned in [9]–[11].

In [9], to perform supervised parameter estimation, a tensor
approach is employed, in which the decoupling of the BS-IRS
and IRS-UE channels is achieved by modeling the received
signal at the BS as a 3rd order PARAFAC tensor. In our
previous work [10], we proposed a 3th order Tucker to solve
the problem of parameter estimation of (quasi)-static channels
in the context of an IRS-aided multiple input multiple output
(MIMO) system. The problem was solved by employing
the high order single value decomposition (HOSVD) and
alternating least squares (ALS) algorithms with no increase
in computational complexity compared to the competing
methods. Also, in [11], we proposed a scenario for data-aided
tracking where all involved channels were time-varying. This
was solved by employing tensor methods on a two-stage
parameter estimation framework. In this work, we consider
that the IRS and the BS are in fixed positions, which is more
realistic, meaning that the BS-IRS channel is static.

In this paper, we propose a tensor modeling for the received
signal at the BS that models the signal as a 3rd order
PARAFAC tensor to solve the parameter estimation problem
by employing the ALS algorithm [12] in the context of a single
time-varying channel. Different from our approach in [11],
this new solution solves the problem by developing a model
that exploits the fact that the channel between the BS and
the IRS is static. Usually, this is an acceptable consideration
since the BS and the IRS are deployed in fixed positions. We
also provide system design recommendations for our proposed
solution while discussing the computational complexity of
the proposed solution. Our simulation results show that the
proposed tensor-based solution achieves better performance
in terms of normalized mean square error (NMSE) of the
concatenated channel as the classical least squares (LS)
filter and the proposed Khatri-Rao factorization (KRF) in [9]
without increasing the computational complexity.

Notation: Scalars, vectors, matrices, and tensors are
represented as a,a,A, and A. Also, A∗, AT, AH, and
A† stand for the conjugate, transpose, Hermitian, and
pseudo-inverse, of a matrix A, respectively. The jth column
of A ∈ C

I×J is denoted by aj ∈ C
I×1. The operator vec(·)

transforms a matrix into a vector by stacking its columns,
e.g., vec(A) = a ∈ C

IJ×1, while the unvec(·)I×J operator
undo the operation. The operator D(·) converts a vector into
a diagonal matrix, Dj(B) forms a diagonal matrix R×R out
of the jth row of B ∈ C

J×R. Also, IN denotes an identity
matrix of size N × N . The symbols ⊗ and ⋄ indicate the
Kronecker and Khatri-Rao products.
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Fig. 1: Proposed IRS-assisted MIMO system scenario.
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Fig. 2: Time-domain transmission protocol.

II. SYSTEM MODEL

We consider an uplink IRS-assisted MIMO scenario with
a BS equipped with M receiver antennas, which receives a
signal from a UE equipped with Q transmit antennas via a
passive IRS with N reflecting elements as shown in Fig. 1.
The transmission protocol contains K+1 blocks each of length
of T symbol periods, as shown in Fig 2. The received signal
is given by

yk,t = GD(st)Hkzt + vk,t ∈ C
M×1, (1)

where D(st) is the IRS phase-shift matrix, zt is the pilot
sequence and vk,t is the additive white Gaussian noise
(AWGN) vector with t ∈ {1, · · · , T}. We assume that the
IRS-UE link changes faster due to mobility while the BS-IRS
remains static. Specifically, the IRS-UE channel Hk changes
between blocks, while the BS-IRS channel G remains constant
during K+1 blocks. Assuming a millimeter Wave (mmWave)
scenario, we adopt a multipath channel model [13] for the
involved channels. We can express these channel matrices as
follows

G =

L1
∑

l1=1

α(l1)arx(µ
(l1)
bs )b(irs)H

tx (µ
(l1)
irsD

, ψ
(l1)
irsD

), (2)

Hk =

L2
∑

l2=1

β
(l2)
k b(irs)

rx
(µ

(l2)
irsA

, ψ
(l2)
irsA

)aH
tx(µ

(l2)
ue ), (3)

where L1 and L2 are the number of directions for channels G
and Hk, respectively. The lth BS steering vector arx(µ

(l1)
bs ) is

associated with the spatial frequency µ(l1)
bs = πcos(ϕ(l1)bs ), with

ϕ
(l1)
bs being the angle of arrival (AoA), which can be further

written as

arx(µ
(l1)
bs ) =

[

1, · · · , e−j(M−1)µ
(l1)
bs

]T
∈ C

M×1. (4)

Similarly, the pth one-dimensional steering vector for the
UE is atx(µ

(l2)
ue ) having spatial frequency, which is defined as

µ
(l2)
ue = πcos(ϕ(l2)ue ), with ϕ

(l2)
ue being the angle of departure

(AoD), and can be written in terms of spatial frequency as

atx(µ
(l2)
ue ) =

[

1, · · · , e−j(Q−1)µ
(l2)
ue

]T
∈ C

Q×1. (5)

At the IRS, b(irs)
rx (µ

(l2)
irsA

, ψ
(l2)
irsA

) is the 2D steering vector with

spatial frequencies µ(l2)
irsA

= πcos(ϕ(l2)irsA
)sin(θ(l2)irsA

) and ψ
(l2)
irsA

=

πcos(ϕ(l2)irsA
), where ϕ(l2)irsA

and θ
(l2)
irsA

are the azimuth AoA and
the elevation AoA, respectively. This can be further written as
the Kronecker product between two steering vectors as

b(irs)
rx

(µ
(l2)
irsA

, ψ
(l2)
irsA

) = b(irs)
rx

(µ
(l2)
irsA

)⊗ b(irs)
rx

(ψ
(l2)
irsA

) ∈ C
N×1. (6)

The IRS transmission steering vector, b
(irs)
tx (µ

(l1)
irsD

, ψ
(l1)
irsD

),

with spatial frequencies defined as µ
(l1)
irsD

=

πcos(ϕ(l1)irsD
)sin(θ(l1)irsD

) and ψ
(l1)
irsD

= πcos(ϕ(l1)irsD
), where

ϕ
(l1)
irsD

and θ
(l1)
irsD

are respectively the azimuth AoD and the
elevation AoD, is given by

b
(irs)
tx (µ

(l1)
irsD

, ψ
(l1)
irsD

) = b
(irs)
tx (µ

(l1)
irsD

)⊗ b
(irs)
tx (ψ

(l1)
irsD

) ∈ C
N×1. (7)

The IRS phase-shift vector is defined as st =
[

ejθ1,t , · · · , ejθN,t
]T

∈ C
N×1, where θn,t is the phase-shift

of the nth IRS element at the tth time slot. Moreover, α =
[α(1), · · · , α(L1)]T ∈ C

L1×1 and βk = [β
(1)
k , · · · , β

(L2)
k ]T ∈

C
L2×1 collect the path loss and fading components of the

BS-IRS and IRS-UE links, respectively. The aging effects are
modeled by assuming that βk ∈ C

L2×1 vary according to a
first-order auto-regressive (AR) process defined as [14]

βk = λβk + ξk, k = {1, · · · ,K}, (8)

where ξk ∼ CN (0, (1− λ2)IL2) ∈ C
L2×1 is the AR process

noise term for the IRS-UE link with λ being its correlation
coefficient [15]. We can compact the notation for G and Hk

as follows

G = ArxD(α)BH
tx ∈ C

M×N , (9)

Hk = BrxD(βk)A
H
tx ∈ C

N×Q, (10)

where Arx , Atx , Brx , and Btx are the steering matrices defined
as

Arx =
[

arx(µ
(1)
bs ), · · · ,arx(µ

(L1)
bs )

]

∈ C
M×L1 ,

Atx =
[

atx(µ
(1)
ue ), · · · ,atx(µ

(L2)
ue )

]

∈ C
Q×L2 ,

Brx =
[

b(irs)
rx

(µ
(1)
irsA
, ψ

(1)
irsA

), · · · , b(irs)
rx

(µ
(L2)
irsA

, ψ
(L2)
irsA

)
]

∈ C
N×L2 ,

Btx =
[

b
(irs)
tx (µ

(1)
irsD
, ψ

(1)
irsD

), · · · , b(irs)
tx (µ

(L1)
irsD

, ψ
(L1)
irsD

)
]

∈ C
N×L1 .

III. PARAFAC-BASED PILOT SIGNAL DESIGN

This section describes the proposed tensor-based method
for channel parameter estimation exploiting a 3rd order
PARAFAC tensor. Using properties vec(ABC) = (CT ⊗
A)vec(B) and vec(AD (b)C) = (CT ⋄ A)b in the signal
model of (1), yields

yk,t = vec (IMGD(st)Hkzt) + vk,t ∈ C
M×1,

= (zT
t ⊗ IM )vec(GD(st)Hk) + vk,t,

= (sT
t ⊗ zT

t ⊗ IM )vec(HT
k ⋄G) + vk,t. (11)
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and applying again property vec(ABC) = (CT ⊗A)vec(B)
give us

yk,t = vec[(zT
t ⊗ IM )(HT

k ⋄G)st] + vk,t,

= (sT
t ⊗ zT

t ⊗ IM )vec(HT
k ⋄G) + vk,t. (12)

Collecting the signals during the T symbol periods yields

yk =
[

yT
k,1, · · · ,y

T
k,T

]T
, (13)

= [(S ⋄Z)T ⊗ IM ]vec(HT
k ⋄G) + vk ∈ C

MT×1, (14)

= Ωuk + vk ∈ C
MT×1, (15)

where S = [s1, · · · , sT ] ∈ C
N×T , Z = [z1, · · · , zT ] ∈

C
Q×T are matrices collecting the IRS phase-shifts and pilots,

Ω = (S ⋄ Z)T ⊗ IM ∈ C
MT×MQN , uk = vec(HT

k ⋄ G) ∈

C
MQN×1, and vk =

[

vT
k,1, · · · ,v

T
k,T

]T
∈ C

MT×1 is the
AWGN term. From (15), we formulate the following LS
problem

ûk = arg min
uk

||yk −Ωuk||
2
2 , (16)

where the solution requires T ≥ QN and is given by

ûk = Ω
†yk ∈ C

MQN×1. (17)

Let us define Rk = unvecMQ×N (ûk) ≈ HT
k ⋄ G ∈

C
MQ×N . Using (9) and (10), while applying property (A ⊗

B)(C ⋄D) = (AC) ⋄ (BD), we have

Rk ≈ [A∗
tx D(βk)B

T
rx
] ⋄ [Arx D(α)BH

tx ], (18)

≈ (A∗
tx ⊗Arx)[(D(βk)B

T
rx
) ⋄ (D(α)BH

tx )], (19)

≈ (A∗
tx ⊗Arx)[D(βk)⊗ D(α)](BT

rx
⋄BH

tx ). (20)

Let us consider fk = βk ⊗ α ∈ C
L1L2×1, then (20) can be

rewritten as

Rk ≈ AD(fk)B
T ∈ C

MQ×N , (21)

where A = (A∗
tx ⊗Arx) ∈ C

MQ×L1L2 and B = (BT
rx
⋄BH

tx ) ∈
C

N×L1L2 represents the channel geometry information from
the BS-UE and IRS, respectively. The collection of matrices
{R1, . . . ,RK}, in (21) over all blocks k ∈ {1, . . . ,K} can be
arranged as a third-order PARAFAC tensor R ∈ C

MQ×N×K ,
which can be expanded in terms of a tensor notation as

R ≈ I3,L1L2 ×1 A×2 B ×3 F
T ∈ C

MQ×N×K , (22)

where F = [f1, · · · ,fK ] ∈ C
L1L2×K is the combined

pathloss across all K blocks. The matrix unfoldings of R are
given by

[R](1) = A
(

F T ⋄B
)T

∈ C
MQ×NK , (23)

[R](2) = B
(

F T ⋄A
)T

∈ C
N×MQK , (24)

[R](3) = F T (B ⋄A)
T ∈ C

K×MQN . (25)

Consequently the estimation of A, B, and F consists of
solving the following optimization problem
{

Â, B̂, F̂
}

= arg min
A,B,F

∣

∣

∣

∣R− I3,L1L2
×1 A×2 B ×3 F

T
∣

∣

∣

∣

2

F
,

(26)

which can be performed by means of the ALS algorithm
(summarized in Algorithm 1) [12], [16].

Algorithm 1 Alternating least squares

Require: Tensor R, maximum number of iterations imax,
convergence threshold δ.

1: Initialize randomly A, B, and F at iteration i = 0.
2: while ||e(i)− e(i− 1)|| ≥ δ and i < imax do
3: Find a least squares estimate of A as

Â = [R](1)

[

(F̂ T ⋄ B̂)T
]†

.

4: Find a least squares estimate of B as

B̂ = [R](2)

[

(F̂ T ⋄ Â)T
]†

.

5: Find a least squares estimate of F as

F̂ =

(

[R](3)

[

(B̂ ⋄ Â)T
]†
)T

.

6: Repeat until convergence.
7: end while
8: return R̂ ≈ I3,L1L2

×1 Â×2 B̂ ×3 F̂
T.

A. ALS Channel Parameter Estimation

In this scenario, the algorithm consists of estimating A,
B, and F in an alternating way by iteratively solving the
following cost functions

Â = arg min
A

∣

∣

∣

∣

∣

∣
[R](1) −A(F T ⋄B)T

∣

∣

∣

∣

∣

∣

2

F
, (27)

B̂ = arg min
B

∣

∣

∣

∣

∣

∣
[R](2) −B(F T ⋄A)T

∣

∣

∣

∣

∣

∣

2

F
, (28)

F̂ = arg min
F T

∣

∣

∣

∣

∣

∣
[R](3) − F T(B ⋄A)T

∣

∣

∣

∣

∣

∣

2

F
, (29)

with the solutions for (27)-(29) being respectively given by

Â = [R](1)
[

(F T ⋄B)T
]†

∈ C
MQ×L1L2 , (30)

B̂ = [R](2)
[

(F T ⋄A)T
]†

∈ C
N×L1L2 , (31)

F̂ =
(

[R](3)
[

(B ⋄A)T
]†
)T

∈ C
L1L2×K , (32)

with each solution requiring that

L1L2 ≤ NK, L1L2 ≤MQK, L1L2 ≤MQN. (33)

These conditions are necessary to guarantee the existence
of the LS estimates of A, B, and F , respectively, by
ensuring that the pseudoinverses on Equations (30)-(32) are
well defined. The proposed ALS to solve the problem in
(26) consists of three iterative and alternating update steps
that follow the LS solutions in (30)-(32). The reconstruction
error is minimized to a one-factor matrix at each update by
fixing the remaining matrices to their previous estimation. This
procedure is repeated until convergence, which happens when
the reconstruction error of consecutive iterations, given by
e(i) = ||R− R̂(i)||2F, achieves ||e(i)− e(i− 1)|| ≤ ϵ and ϵ is
the threshold parameter with R̂(i) being the estimated tensor
fit model at the ith iteration. We initialize the factor matrices
randomly, and the convergence threshold is set to ϵ = 10−5.
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TABLE I: Computational complexity: LS, KRF, and ALS.

Algorithm Computational Complexity

LS (17) O(K(MQN)3)

KRF [9] O(KMQN)

ALS (Alg. 1) O(KMQNALSiter(L1L2)2(1 + K
N

+ K
MQ

))

B. Computational complexity

In Table I, we describe the computational complexity
for the selected benchmark algorithms, the LS at (17), the
KRF from [9], and our proposed PARAFAC ALS algorithm.
Consider that the pseudo-inverse of a matrix A ∈ C

I×J , with
I > J , and its rank-R singular value decomposition (SVD)
approximation have complexities O(IJ2) and O(IJR) [17],
respectively. The KRF [9] estimates the combined channel
Rk = HT

k ⋄G by finding estimates of both G and Hk that
solves a set of N rank-one approximations using the SVD
along K blocks. Regarding the proposed algorithm, the ALS
computes 3 pseudo-inverses (30)-(32) along ALSiter iterations
until convergence over K blocks.

IV. SIMULATION RESULTS

We evaluate the performance of the proposed tensor-based
algorithm by comparing it again with the reference parameter
estimation method based on the KRF [9]. The pilot signal
matrix Z ∈ C

Q×T is designed as a Hadamard matrix,
while a discrete Fourier transform (DFT) is adopted for the
IRS phase-shift matrix S. The angular parameters ϕ(l1)bs and
ϕ
(l2)
ue are randomly generated from a uniform distribution

between [−π, π] while the IRS elevation and azimuth angles of
arrival and departure are randomly generated from a uniform
distribution between [−π/2, π/2]. The fading coefficients α
and βk are modeled as independent Gaussian random variables
CN (0, 1). The parameter estimation accuracy is evaluated in
terms of the NMSE given as

NMSE(R) = E
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∣

∣

∣

∣

∣

2
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, (34)

where R̂k is the estimated tensor fit reconstructed with (22)
at the eth run, with E = 104 being the number of Monte
Carlo trials. Unless otherwise stated, the system parameters
are {M = 4, Q = 4, L1 = 2, L2 = 2, N = 16, T = 64,K =
5, and δ = 0.75}.

In Fig. 3, we evaluate the NMSE performance associated
with the estimation of the combined channel Rk = HT

k ⋄G, as
a function of the training SNR to compare selected competing
algorithms, the classical LS filter as in (17), the state-of-the-art
KRF [9], and our proposed solution in Algorithm 1. We
observe that the proposed solution in Algorithm 1 outperforms
the LS filter and the state-of-the-art KRF [9] algorithms by
approximately 10 dB and 7 dB, respectively. Also, this gain
is almost independent of the SNR. In the case of the LS, the
estimation is worse because this solution does not exploit the
intrinsic Khatri-Rao structure of the channel, while the KRF
exploits the separability of the channel structure to refine the
estimation process a step further than the LS. In contrast,
the proposed ALS is an iterative solution that refines the
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Fig. 3: Performance evaluation in terms of NMSE for the competing
algorithms, the LS filter in (17) and the KRF [9], and for the proposed
ALS solution in Algorithm 1.
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Fig. 4: Computational complexity cost of the competing solutions
and the proposed ALS solution in Alg 1 according to the Table I.

estimations until convergence is declared. Furthermore, we
also exploit the geometric structure of the scenario in the
proposed solution. In all considered methods, we observe that
the NMSE decreases with SNR, in the log-domain, linearly as
expected.

In Fig. 4, we analyze the computational complexity of the
competing algorithms and the proposed solution in Algorithm
1. In this scenario, we fixed all the system parameters except
for the number of reflecting elements at the IRS, depicted by
N , according to Table I. To compute the cost of the KRF
[9], and the ALS in Algorithm 1, we take into account the
additional cost from the computation of the combined channel
parameters by the LS filter in (17) which is the expensive step
of the involved solutions (see Table I). Moreover, simulations
show that it takes approximately 10 iterations to achieve
convergence in the proposed ALS algorithm. We observe that
the competing LS and KRF [9] algorithms have approximately
the same cost as the proposed ALS solution.

In Fig. 5a, we evaluate the number of iterations required
by the proposed ALS solution in Algorithm 1 to accomplish
convergence as a function of the SNR and the number of
channel directions, depicted as L1 and L2, respectively. We
set the target convergence criterion to ϵ = 10−5, which means
that convergence is declared when the fit error of the estimated
tensor model between consecutive iterations is less than ϵ. As
expected, in the low SNR region (< 10 dB), the ALS solution
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in Algorithm 1 takes more iterations to declare convergence
as the noise variance is higher. Also, when the total number
of components, i.e., the product L1L2, grows more iterations
are needed to solve the problem in (26). On the other hand, at
a high SNR regime (> 20 dB), the total number of iterations
required for achieving the convergence is considerably lower
(around 80% reduction to cases L1L2 = 2 and L1L2 = 3)
however, when L1L2 = 16, the proposed ALS algorithm does
not achieve the convergence criterion under 100 iterations, i.e.,
a lower threshold is required or a higher number of iterations
at the cost of a higher computational complexity. At the high
SNR region (> 20 dB), the required number of iterations
is considerably lower than most of the scenarios. However,
for the scenario where L1L2 = 16 components, the proposed
algorithm still has convergence problems under 100 iterations.

In Fig. 5b, we take the scenario of Fig. 5a for the case where
we have L1L2 = 4 components and evaluate the impact of the
number of reflecting elements of the IRS in the convergence
of the ALS solution at Algorithm 1. We observe that, as the
number of reflecting elements N increases, fewer iterations
are needed for convergence, which is linked to the LS filter in
(17) since, if N increases, we can sense the channel longer to
achieve a more precise acquisition of the combined channel
state information (CSI). Furthermore, we notice that for this
scenario, all the cases accomplish the convergence at the
high SNR region (> 20 dB) independently of the number of
reflecting elements.

V. CONCLUSIONS

This paper proposes a tensor-based channel estimation
algorithm for a single time-varying channel in IRS-assisted
systems. Different from our work in [10], we considered
that the channel BS-IRS remains quasi-static, but the channel
IRS-UE has time-varying fading components. In contrast, the
parametric structure of the scenario is considered to remain
approximately constant. We have proposed a tensor modeling
for the reflected signal by the IRS that explores a 3rd order
PARAFAC tensor structure. To solve the CSI acquisition in
this scenario, we derive an ALS solution according to Alg. 1.
The parameter estimation accomplishes the estimation of only
the overall channel UE-IRS-BS.
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