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Abstract— In communication systems, noise is almost invari-
ably present, originating from a multitude of sources and
variables. These sources include thermal effects, interference,
quantization, and channel imperfections, contributing to the
random nature of noise. Determining noise levels is crucial
and remains a pervasive challenge in communication systems,
especially in recent times when better utilization of spectrum
sensing is required. In this paper, we propose a noise estimation
method based on deep learning using spectrograms extracted
from wireless signals. The proposed method achieved promising
results using several state-of-art computer vision architectures.
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I. INTRODUCTION

In communication systems, noise is almost invariably
present, originating from a multitude of sources and variables.
These sources include thermal effects, interference, quantiza-
tion, and channel imperfections, contributing to the random
nature of noise. Given the uncertainty surrounding its charac-
teristics, noise poses a pervasive challenge in communication
systems. Consequently, various types of noise can detrimen-
tally affect signal quality, leading to a reduction in the signal-
to-noise ratio (SNR). As the SNR decreases, both communica-
tion range and bandwidth become limited, compromising the
dynamic efficiency and scalability of communication systems
[1], [2].

Several variables can influence the increase of noise in
communication systems. Factors such as temperature fluctu-
ations and electromagnetic interference can heighten signal
corruption by noise. Additionally, channel characteristics, in-
cluding attenuation, dispersion, and multipath effects, distance
between users, can exacerbate noise levels during signal trans-
mission [1]. The combination of these variables underscores
the complexity of managing noise in communication systems,
ultimately leading to a drastic reduction in the quality of
signal transmission and reception, thereby compromising the
integrity and efficiency of the communication systems.

Determining noise levels is crucial and remains a pervasive
challenge in communication systems, especially in recent
times when better utilization of spectrum sensing is required
[3]. Therefore, methods that estimate noise levels can aid in

designing better communication systems. By adjusting trans-
mitted power, allocating bandwidth, and optimizing frequency
channels more efficiently, overall network performance and
user experience can be significantly improved [4].

In this paper, we propose a noise estimation method based
on deep learning using spectrograms extracted from wireless
signals. Different levels of additive white Gaussian noise
(AWGN) are introduced to the signals. Spectrograms are
extracted from these signals and used as input for state-of-
the-art computer vision models employed for classification
and regression purposes. The models estimate the noise power
density, specifically AWGN levels. The proposed method
achieved excellent results, with an accuracy superior to 97%
on the test dataset.

A. Contributions

The contributions of this paper can be summarized as
follows: (1) In signal generation, higher levels of AWGN
noise were inserted into the signal. Additionally, the user’s
location changes over time, and several variables influencing
the signal are introduced; (2) The Hilbert transform is em-
ployed to highlight singular features in the signals; (3) Several
state-of-the-art computer vision architectures were utilized to
estimate the noise; and (4) The proposed method achieved
high performance compared to similar proposals.

II. RELATED WORKS

The authors in [5] introduced a novel method for estimating
the signal-to-noise ratio (SNR). This approach leverages a
deep learning network called DINet, which integrates a de-
noising convolutional neural network (DnCNN) with an image
restoration convolutional neural network (IRCNN) operating
in parallel. By utilizing the sounding reference signal, DINet
achieves improved SNR estimation performance compared
to existing algorithms. Evaluation of the method involved
comparing it against other techniques, with results indicat-
ing superior performance. The evaluation metric used was
the normalized mean square error (NMSE) across 200 test
samples, resulting in an NMSE value of 0.0012, demonstrating
significant improvement over alternative algorithms.
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In their work [6], the authors introduced a method for SNR
estimation in LTE and 5G systems. They employed a CNN-
LSTM neural network, combining a convolutional neural net-
work (CNN) with a long short-term memory (LSTM) network.
The CNN was responsible for capturing spatial features, while
the LSTM focused on extracting temporal characteristics from
the input signal. The authors generated data using MATLAB
LTE and 5G toolboxes, considering various modulation types,
path delays, and Doppler shifts. Evaluation was conducted
using the normalized mean square error (NMSE) metric.
Remarkably, the NMSE achieved a value of zero in the
time-domain across SNR levels ranging from −4 to 32 dB,
indicating minimal latency. However, in the frequency-domain,
the proposed method exhibited relatively poorer performance.

In their paper [7], the authors introduced NDR-Net, a novel
neural network designed for channel estimation under condi-
tions of unknown noise levels. NDR-Net consists of three main
components: a noise level estimation subnet, a DnCNN, and a
residual learning cascade. Initially, the noise level estimation
subnet determines the noise interval, followed by processing of
the pure noise image using the DnCNN. Subsequently, residual
learning is applied to extract the noiseless channel image.
Model performance was evaluated using the mean square error
(MSE) metric across various channel models tapped delay
line (TDL-A, TDL-B, TDL-C), consistently yielding low MSE
values. However, it is important to note that the model’s
performance evaluation was limited to a SNR range of 0 to
35, which may not provide a comprehensive assessment of its
robustness, especially in scenarios with high noise levels.

Finally, in [8] the authors proposed classifier based CNN for
recognition of the spectrograms extracted from speech signals
insert with different types of noise. Six types of noise were
used to corrupt signals. They generated 30, 000 samples of data
for the experiments. The spectrograms were extracted using
the short time Fourier transform (STFT). Two architectures
of CNN were used in the experiments, with two and three
convolutional layers. The metrics indicated high performance
in the proposed method.

III. METHODOLOGY

A. Proposed system

The proposed method consists of estimating the noise power
density of spectrograms extracted from wireless signals using
deep learning. For this purpose, the methodology is divided
into four steps: (1) Signal generation, where wireless signals
are generated by inserting different levels of noise power
density and variables that influence the signal quality; (2)
Extraction of the spectrograms, which represent the signal in
the frequency domain as images; (3) Training state-of-the-art
computer vision architectures; and (4) Evaluating the proposed
method. Fig. 1 presents the block diagram illustrating all the
described steps.

1) Signal generation: For the purposes of this paper, we
will only consider hypotheses involving the presence of the
primary user using the channel. We assume that a number of
secondary users and a single primary user are moving at a
speed v, with their starting positions randomly chosen within

a given area. As a result, the users’ locations change over a
time interval of ∆t. Additionally, we are considering a multi-
channel system with NB bands, each having a bandwidth of
BW . Furthermore, we assume that the primary user can utilize
NBP

consecutive bands [9]. Therefore, the received signal of
the i-th secondary user on the j-th band at time n can be
described as

yjk(n) =

{
sjk(n) + wj

k(n), for H1 and j ∈ BP√
ηsjk(n) + wj

k(n), for H1 and j ∈ BA
(1)

where sjk(n) = κk(n)g
j
k(n)x(n) and wj

k(n) is the AWGN
whose noise power density is N0, zero mean and standard

deviation σn =

√
BW 10

N0
10 . Being η the proportion of power

leaked to adjacent bands, then BP are the bands occupied by
the primary user and BA are the bands affected by the leaked
power of the primary user.

In the expression sjk(n), a simplified path loss model is
utilized, which can be written as follows:

κk(n) =

√
P

β(dk(n))α10
hk(n)

10

(2)

where α and β denote the path-loss exponent and path-loss
constant, respectively. Here, dk(n) represents the Euclidean
distance between the primary user and secondary user k at
time n. The shadow fading of the channel, indicated by hk(n),
between the primary user and secondary user k at time n in
decibels (dB) can be described by a normal distribution with a
zero mean and a variance of σ2

s . The term P denotes the power
transmitted by the primary user within a specified frequency
band. Furthermore, the multipath fading factor, denoted as
gjk(n), is modeled as an independent zero mean circularly
symmetric complex Gaussian (CSCG) random variable. More-
over, the data transmitted at time n, represented by x(n), has
an expected value of one [9], [10].

A special type of filter that shifts the phases of a signal
while leaving all the amplitudes of the spectral components
unchanged is the Hilbert transform [11].

H
{
yjk(n)

}
=

1

π

∫ ∞

m=−∞

y(m)

n−m
dm (3)

We applied the Hilbert transform to better highlight singular
information from the signals. Sequentially, we modulated the
signals at a frequency ω:

a(n) =
∣∣∣H{

yjk(n)
}
ei2πωn

∣∣∣ (4)

where a(n) is the output of the signal generation step.
2) Spectrogram extractor: The Python function

scipy.signal.spectrogram was used to extract the spectrogram
from the signals, which returns a visual representation of
the spectral content of the signal over time. As inputs to
this function, the input signal a(n) and the frequency ω are
provided. Mathematically, the spectrogram is calculated by
the application of the STFT, defined as
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Fig. 1: Block diagram of the proposed methodology.

X(m,ω) =

N−1∑
n=0

a(n) · w(n−m) · e−iωn (5)

where X(m,ω) is the spectrum of the window m in the fre-
quency ω, a(n) is the input signal, w(n) the window function,
and e−jωn is the complex exponential function. Then, the
spectrogram is computed by the square module of the spec-
trum, |X(m,ω)|2. The output of the scipy.signal.spectrogram
function consists of the window start times, frequencies in
hertz, and the spectrograms calculated for each window, rep-
resented as a three-dimensional matrix.

3) Models proposed: Among the backbones deep learning
models used for the noise power density estimating task
are MobileNetV2, MobileNetV3Small, MobileNetV3Large,
ResNet50, ResNet101, ResNet152, ConvNeXtTiny and Con-
vNeXtSmall. The MobileNets architecture are compose by
bottleneck and convolutional layers with hard-swish (HS) as
activation function

HS(x) = x
ReLU(x+ 3)

6
(6)

where ReLU is the Rectified Linear Unit. By employing this
architecture, MobileNet achieves impressive performance with
significantly fewer parameters compared to traditional CNNs
[12].

The ResNet architecture are compose by residual units. A
residual unit is designed to address the vanishing gradient
problem and enable the training of very deep neural networks.
The residual unit can be described as

y = W2 ∗ReLU(W1 ∗ x) + x (7)

where y is the output of the residual unit, x is the input of
the residual unit and W1 and W2 are the weights from two
convolutional layers. A residual unit applies two convolutional
layers to the input, and then adds the original input to the

result of these layers, enabling the network to learn identity
mappings more easily and alleviating the vanishing gradient
problem [13].

The ConvNeXt is a recent variant of the ConvNet archi-
tecture that apply some principles from vision transformers
maintaining the convolutional nature of the model. The Con-
vNeXt block can be described as

c = GELU(W2 ∗ (LN(W1 ∗ x)) + x (8)

where c is the output of the ConvNeXt block, GELU is the
Gaussian Error Linear Unit activation function and LN is
the layer normalization. ConvNeXt block applies a depthwise
convolution followed by layer normalization, pointwise con-
volution, GELU activation, and then adds the original input
to the result, forming a residual connection [14].

4) Metrics: The metrics used for training and testing are the
categorical crossentropy (CC) and accuracy (Ac), respectively,
and are described as

CC = − 1

N

N∑
q=1

M∑
z=1

yqzlog(pqz) (9)

where N is the number of samples, M the number of classes,
yqz is 1 if the sample q belongs to class z and 0 otherwise,
and pqz is the probability of the sample q belongs to class z.

Ac =
TP + TN

TP + TN + FP + FN
(10)

where TP are the true positives, TN are the true negatives,
FP are the false positives, and FN are the false negatives.

IV. EXPERIMENTS AND RESULTS

A. Dataset generation

The first stage of the experiments involves signal generation.
It is assumed that multiple secondary users and a single
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(a) N0 = −114
dBm/Hz

(b) N0 = −124
dBm/Hz

(c) N0 = −134
dBm/Hz

(d) N0 = −144
dBm/Hz

(e) N0 = −154
dBm/Hz

(f) N0 = −164
dBm/Hz

(g) N0 = −174
dBm/Hz

Fig. 2: Examples of spectrograms extracted from signals with different N0.

primary user are moving at a velocity of v = 3 km/h, and
their initial positions are randomly chosen within an area of
250 meters × 250 meters. As a result, the users’ positions
change over a time period of ∆t = 5 seconds. Each occupied
band has bandwidth BW of 10 MHz, and the primary user
can simultaneously use 1 to 3 bands. Additionally, P = 23
dBm, β = 103.453, α = 3.8, σ = 7.9 dB, and N0 is
randomly chosen between −114 and −174 dBm/Hz. The ratio
of leaked power to adjacent bands, η, is 10 dBm, resulting in
leaked power to adjacent bands being half of the primary user
signal power. The carrier frequency ω used is 2.412 GHz,
which is widely employed in various wireless communication
standards, including Wi-Fi and Bluetooth. Signals were created
with 1, 024 samples per second. For the experiments, 42, 000
instances were generated, divided into 80% for training, 10%
for validation and 10% for testing. In Fig. 2 the difference
between the spectrograms extracted from signals with different
N0 is shown. It is worth noting that the spectrogram is also
impacted by other variables that influence the quality of the
signal.

B. Training parameters

In Table I, all parameters used to train the proposed com-
puter vision models for estimating noise based on spectro-
grams are presented.

C. Noise power density estimation

In Table II, the accuracy achieved by each backbone on the
test dataset is presented. Notice that the optimized architec-
tures, MobileNets, achieved the lowest accuracy. MobileNetV2
achieved the lowest accuracy on the test dataset. However,
MobileNetV3Small, which has fewer training parameters, per-
formed better. Among the MobileNets, MobileNetV3Large
achieved the best performance. The ResNets and ConvNeXts
performed similarly. The networks with more parameters,
in these cases, obtained the best performance, especially
ResNet152, which achieved the highest level of accuracy.

In Fig.3, all confusion matrices for the backbone mod-
els proposed for the experiments are presented. All models

TABLE I: Training parameters.

Parameter Value
Input size (224, 224, 3)

Layer trainable True

Backbone

MobileNetV2, MobileNetV3Small, Mo-
bileNetV3Large, ResNet50, ResNet101,
ResNet152, ConvNeXtTiny and Con-
vNeXtSmall

Global Average Pooling 2D True
Dense 128
Dense 7
Epochs 1, 000

Early stopping True
Patience 15

Checkpoint callback True
Optimizer Adam

Learning rate 0.0001

TABLE II: Accuracy achieved by each backbone on the test
dataset.

Backbone Accuracy Training parameters
MobileNetV2 83.67% 2,422,855

MobileNetV3Small 85.23% 1,013,879
MobileNetV3Large 86.91% 3,120,263

ResNet50 92.18% 23,850,887
ResNet101 94.78% 42,921,351
ResNet152 97.05% 58,634,119

ConvNeXtTiny 96.34% 27,919,463
ConvNeXtSmall 96.72% 49,554,023

achieved good results, but we can notice that architectures
with fewer training parameters demonstrated the lowest per-
formance. The architectures with more training parameters
performed better. For example, compare Fig.3(a) and Fig. 3(f),
which show the worst and best performances, respectively.
We can also notice that there is no consistent pattern for
class confusion; there is homogeneity in the misclassification.
Furthermore, even though ConvNeXtTiny and ConvNeXtS-
mall have a similar number of parameters to ResNet50 and
ResNet101, the ConvNeXts achieved better results. Addition-
ally, the ConvNeXt models achieved similar results to each
other.
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(a) MobileNetV2 (b) MobileNetV3Small (c) MobileNetV3Large (d) ResNet50

(e) ResNet101 (f) ResNet152 (g) ConvNeXtTiny (h) ConvNeXtSmall

Fig. 3: Confusion matrices for all backbone models proposed for the experiments.

V. CONCLUSIONS

In this article, we propose the use of spectrograms extracted
from wireless signals to estimate noise power density using
computer vision architectures. The signals were generated
based on several variables that impact their quality. The
spectrograms were extracted and used as input to popular
state-of-the-art computer vision architectures. The proposed
method achieved a high level of accuracy, especially in deep
architectures such as ResNet152, which achieved more than
97% accuracy. In this way, the proposed method proved
capable of successfully estimating the noise level present
in wireless telecommunication network signals, contributing
to the automation process of such networks and aiding in
mitigating the distortion effects of the signals received by
users.

AKNOWLEDGEMENTS

This work was a partnership between the Federal University
of Amazonas, the Federal University of Uberlândia and SiDi.

REFERENCES

[1] Muhammad Ali Umair, Marco Meucci, and Jacopo Catani. Strong noise
rejection in vlc links under realistic conditions through a real-time sdr
front-end. Sensors, 23(3):1594, 2023.

[2] D Smitha Gayathri and KR Usha Rani. Adapting the effect of impulse
noise in broadband powerline communication. In Proceedings of
the International Conference on Cognitive and Intelligent Computing:
ICCIC 2021, Volume 1, pages 543–552. Springer, 2022.

[3] Shaoqing Zhou, Wei Xu, Kezhi Wang, Marco Di Renzo, and Mohamed-
Slim Alouini. Spectral and energy efficiency of irs-assisted miso com-
munication with hardware impairments. IEEE wireless communications
letters, 9(9):1366–1369, 2020.

[4] Xiao Chen, Weichao Lyu, Zejun Zhang, Jian Zhao, and Jing Xu.
56-m/3.31-gbps underwater wireless optical communication employing
nyquist single carrier frequency domain equalization with noise predic-
tion. Optics Express, 28(16):23784–23795, 2020.

[5] Guohua Yao and Zhuhua Hu. Snr estimation method based on srs and
dinet. In Proceedings of the 2023 15th International Conference on
Computer Modeling and Simulation, pages 218–224, 2023.

[6] Thinh Ngo, Brian Kelley, and Paul Rad. Deep learning based prediction
of signal-to-noise ratio (snr) for lte and 5g systems. In 2020 8th Inter-
national Conference on Wireless Networks and Mobile Communications
(WINCOM), pages 1–6. IEEE, 2020.

[7] Yinying Li, Xin Bian, and Mingqi Li. Denoising generalization perfor-
mance of channel estimation in multipath time-varying ofdm systems.
Sensors, 23(6):3102, 2023.
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