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Partial Commutativity and Quantum Zero-Error
Capacity
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Abstract— Recently, it was discovered that there is a connection
between the growth factor of the partially commutative monoid,
denoted as β(G), and the independence number of the graph.
It was shown that bβ(G)c ≥ α(G) and that logbβ(G)c is as
an upper bound for the classical zero-error capacity [1]. In this
paper, we demonstrate that β(G) is not only an upper bound for
the Lovász number of G, but is also for the chromatic number
of the complement G. Furthermore, we show that logbβ(G)c is
an upper bound for the quantum zero-error capacity.

Keywords— Zero-Error Capacity, Partially Commutative
Monoids, Lovász Number.

I. INTRODUCTION

The classical zero-error capacity was defined by Shan-
non [2] using concepts from graph theory. The definition of
the zero-error capacity of a quantum channel was presented
in the works by Medeiros and collaborators [3], [4], [5].
Even today, it is not known whether this classical zero-error
capacity is, in general, computable in the sense that there is a
program that returns the value in a finite time [6], [7]. Whereas
quantum zero-error capacity is a problem of the class QMA-
Complete [8]. For these reasons, some upper bounds have been
proposed [9], [10], [11], [12], [1], [13].

The zero-error capacity, whether classical or quantum, is
often estimated using the Lovász number ϑ(G), where G
is the adjacency graph of the channel [9], [13], [14]. Some
methods for deriving upper bounds for the quantum zero-error
capacity involve establishing the partial commutation between
operators that define noncommutative graphs [11], [15], [14].
Duan et al. [11] introduced a quantum version of the Lovász
number which can be used to calculate an upper bound for the
quantum zero-error capacity. Furthermore, Boreland et al. [14]
presented an improved version of the quantum Lovász number
proposed in [11].

Recently, it has been discovered that there is a connection
between partially commutative monoids and the zero-error
capacity C0 of a classical channel [1]. Partially commutative
monoids are defined by a finite alphabet and a partial order
relation between the symbols in that alphabet. In this context,
partial commutativity relations define equivalent words, which
then form equivalence classes. These commutativity relations
can be represented using a graph G, known as a commutativity
graph. The number of classes can be estimated by the growth
factor of the monoid β(G), which is calculated from the
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cliques of G. By interpreting the adjacency graph of the
channel as a commutativity graph, the connection between
zero-error capacity and partially commutative monoids was
established.

In the approach presented in [1], the authors showed that
the classical zero-error capacity is upper-bounded by C0(G) ≤
logbβ(G)c, based on the demonstration that bβ(G)c ≥ α(G)
holds. However, in [1], they did not find the relationship
between β(G) and ϑ(G) and did not address the quantum
zero-error capacity.

In this paper, we show that β(G) is an upper bound for
the chromatic number of the complement of G, χ(G), and the
Lovász number ϑ(G) of G. These results are used to show that
logbβ(G)c is an upper bound for the zero-error capacity of a
quantum channel with adjacency graph G. We also discuss
and answer some questions about the bound tightness.

The rest of this article is organized as follows: Section II
presents the fundamental concepts needed to understand the
results involving graphs, classical and quantum zero-error
theory, and partially commutative monoids. In Section III, we
demonstrate the relationship between β(G) and the chromatic
number of G and, from this, we show that logbβ(G)c is also
an upper bound for quantum zero-error capacity. Also, in this
section, we discuss some properties of β(G) and answer some
questions about the bound tightness. Section IV presents the
conclusions and future work.

II. FUNDAMENTALS

A. Graph Theory
A graph G is a pair (V,E) where V is the set of vertices

and E is the set of edges. The edges are represented by tuples
of the form (a, b) where a, b ∈ V . Two vertices connected
by an edge are called adjacent. Simple, undirected graphs are
those in which there are no multiple edges connecting two
vertices and no edges of the type (a, a) with a ∈ V . The
graphs discussed in this article are simple and undirected. The
complement of the graph G = (V,E) is composed of the same
set of vertices V , and the edges connect the vertices that are
not connected in E. The complement of G is represented by
G = (V,E).

In this article, we will frequently discuss some types of
graphs, so it is important to define each of them. A complete
graph is one in which all vertices are connected to each other,
and it’s represented by Kk, where k is the number of vertices.
An empty graph is one that has no edges, denoted by |E|= 0.
A cyclic graph, represented by Ck, is a graph that contains
only one cycle with all k vertices, where k is greater than
or equal to 3. An example of a cyclic graph is the pentagon,
which is represented as C5.
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A subgraph of G = (V,E) is formed by a subset vertex of
V and a subset edge of E. Given a subset S ⊆ V , a graph
induced by S is formed by the vertices S and all the edges of
E that connect two elements of S.

The strong product of n copies of G = (V,E) is denoted by
Gn and consists of the graph formed by the vertices resulting
from the Cartesian product between n copies of V . Two
vertices u = (u1, . . . , un) and v = (v1, . . . , vn) of Gn are
adjacent if there is at least one i where (ui, vi) ∈ E.

A clique of a graph is a subset of vertices in which all these
vertices are two by two adjacent. The clique number ω(G) is
the cardinality of the largest clique of G.

Proper graph coloring is the color assignment to vertices
so that no two adjacent vertices have the same color. The
chromatic number χ(G) is the minimum number of colors
used in a proper coloring of G. A graph is perfect if ω(G) =
χ(G). Obtaining the chromatic number of a graph belongs to
the class of NP-hard problems.

A stable set of a graph is a subset of vertices that are two
by two non-adjacent. The independence number α(G) is the
cardinality of the largest stable set of G. Therefore, it should
be noted that α(G) = ω(G). Furthermore, obtaining graph
independence or clique numbers are NP-complete problems.

Lovász [9] introduced an upper bound for α(G) that can
be calculated in polynomial time since it is a semidefinite
programming relaxation.

Definition 1 (Lovász number [9]): Let G = (V,E) be a
adjacency graph and let i, j ∈ V be two vertices. Define the
matrix T whose elements (i, j) are Ti,j = 0 if (i, j) ∈ E or
i = j. The Lovász number of G is defined as

ϑ(G) = max{‖I + T‖ : I + T ≥ 0}, (1)

where I is the identity matrix and T is a |V |×|V | Hermitian
matrix.

The Lovász number ϑ(G) is related to other graph proper-
ties as stated in the Lovász Sandwich Theorem.

Theorem 1 (Lovász Sandwich Theorem [16], [17]): If G is
a graph and its complement G, then the following holds

α(G) ≤ ϑ(G) ≤ χ(G). (2)
The number ϑ(G) lies between two quantities used to solve

problems in the NP complexity class. For perfect graphs G,
it is true that α(G) = ϑ(G) = χ(G). In 2006 Chudnovsky et
al. [18] proved the so-called strong perfect graph theorem.

Theorem 2 (The strong perfect graph [18]): A graph is
perfect if and only if it contains no induced cycles of the form
Ck and no complement of a cyclic graph Ck, where k ≥ 5
and k is odd.

Although ϑ(G) is widely used as the upper bound for α(G),
Feigi [19] has shown that there is a gap between ϑ(G), α(G)
and χ(G) proportional to the number of k vertices for some
graphs.

Theorem 3 ([19]): For a constant ε > 0, there exists an
infinite family of graphs with k vertices in which holds that

χ(G) > ϑ(G)k1−ε. (3)

B. Zero-Error Capacity

The zero-error capacity, whether classical or quantum, is
associated with the number of messages that can be transmitted
by a channel with zero probability of decoding errors [2].
In the classical case, the channel will be a discrete memo-
ryless (DMC) defined by a finite input alphabet X , a finite
output alphabet Y , and a transition probability matrix P =
[p(yi|xj)]. The elements p(yi|xj) correspond to the probability
of receiving yi at the channel output, given that xi was
the input. In this way, you can define when two states are
confusable or indistinguishable.

Definition 2 (Adjacency of Classical States): Given a
DMC (X , Y , P ), the states xi ∈ X and xj ∈ X are
adjacent (indistinguishable) if there exists a y ∈ Y such that
p(y|xi) > 0 and p(y|xj) > 0.

Based on the adjacency relations between the states, it is
possible to define a graph representing the indistinguishability
relations between the channel’s input states.

Definition 3 (Classical Adjacency Graph): Given a
DMC(X , Y , P ), the adjacency graph G = (V,E) has its
vertices associated with the elements of X = {x1, . . . , xl}
and the edges connect states that are confusable at the output
of the channel, i.e.,

1) V = {1, . . . , l} and
2) E = {(i, j) : ∃y, p(y|xi) > 0 and p(y|xj) > 0}.
Note that the adjacency between two words of length n

defined in X corresponds to finding the adjacency between
vertices in the strong product of n copies of G. It is, therefore,
possible to define the classical zero-error capacity using the
adjacency graph.

Definition 4 (Classical Zero-Error Capacity): Given a
DMC channel and its adjacency graph G, the classical
zero-error capacity is defined as

C0(G) = sup
n

1

n
logα(Gn), (4)

where α(Gn) is the independence number of Gn, Gn is the
strong product of n copies of G and the logarithm is base 2.

In general, if αk(G) ≤ α(Gk), then C0(G) ≥ logα(G).
Shannon [2] demonstrated that if the graph G is perfect, then
α(Gk) = αk(G) and C0(G) = logα(G). Thus, estimating the
classical zero-error capacity is an NP-complete problem [8],
but it is not known whether it is computable in general [6],
[7].

In the quantum case, a channel is a completely positive
trace-preserving map (CPTP) represented by Kraus operators.
While there are other possible representations, this paper will
adopt this one.

Definition 5 (Quantum Channel): Let E be a quantum
channel represented by the Kraus operators {Ei}mi=1 and∑m

i=1E
†
iEi = I . The effect of the E channel on the ρ state

is such that

E(ρ) =

m∑
i=1

EiρE
†
i . (5)

The support of a state is the space spanned by its eigen-
vectors with nonzero eigenvalues. Two quantum states ρi and
ρj can be perfectly discriminated if, and only if, they have
supports in orthogonal subspaces [20]. If ρi and ρj have
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supports in orthogonal states, then Tr(ρiρj) = 0, allowing
us to define the adjacency between quantum states.

Definition 6 (Adjacency of Quantum States): Let ρi, ρj ∈
S be two states, such that i 6= j. The states ρi and ρj are
adjacent (indistinguishable) if ρi and ρj do not have supports
in orthogonal subspaces, i.e., Tr(ρiρj) 6= 0, and are said to be
non-adjacent otherwise.

Definition 7 (Adjacency Graph of a Quantum Channel):
If E is a quantum channel and S = {ρ1, . . . , ρl} is a set
of input states, the characteristic graph G = (V,E) has its
vertices associated with the elements of S and the edges
connect states that are indistinguishable at the output of E ,
i.e.,

1) V = {1, . . . , l} and
2) E = {(i, j) : ρi, ρj ∈ S,Tr(E(ρi)E(ρj)) 6= 0}.
Given the quantum adjacency graph, it is possible to define

the quantum zero-error capacity of a channel [3], [4]. In
essence, the definition is similar to the classical case, but in
the quantum case, it is necessary to look for the set of input
states that maximize the capacity value.

Definition 8 (Quantum Zero-Error capacity): The zero-
error capacity of a quantum channel E is given by

C(0)(E) = sup
S

sup
n

1

n
logα(Gn), (6)

where the supremum is taken over all input sets S and all
codes of length n.

The Lovász number is an upper bound for the classical
zero-error capacity when G is a classical adjacency graph [9],
C0(G) ≤ log ϑ(G). When G is an adjacency graph associated
to a quantum channel E [10], it also holds that C(0)(E) ≤
log ϑ(G), even if entanglement is used. Duan et al. [11] pro-
posed a generalization of the Lovász number using quantum
operators that is also an upper bound for the quantum zero-
error capacity.

Beigi and Shor [8] proved that calculating the zero-error
capacity of a channel is a problem of the QMA-Complete
class, as it is associated with the problem of finding the
quantum stable set of a graph. The QMA class is the quantum
analog of the NP class, but it also contains the NP complexity
class [21].

C. Partially Commutative Monoids and Adjacency Graphs

Given a finite alphabet Σ and a commutativity relation ab ≡
ba between two elements a, b ∈ Σ. Commutativity relations
can be represented using a graph, where the vertices are
associated with the elements of Σ and the edges connect two
vertices that commute. This graph is called a commutativity
graph.

Swapping the order of commutative symbols in words
defined in Σ makes it possible to form equivalent words. For
example, the word u = abcba with the relation ab ≡ ba
makes it possible to obtain the equivalent words v = bacba,
w = abcab and x = bacab. The equivalence relation between
two words u and v is denoted by u ≡ v. The set of words
equivalent to u is called an equivalence class, and the set of all
equivalence classes is called a partially commutative monoid.

The number τG(n) of equivalence classes formed by words
of length n can be obtained using the number of cliques of
the commutativity graph G.

Definition 9 (Dependence Polynomial [22]): Let G be a
commutativity graph, then the dependence polynomial is de-
fined as

D(G, z) =

ω(G)∑
i=0

(−1)iciz
i, (7)

where ci is the number of complete subgraphs (cliques) with
i vertices of G.

The dependence polynomial can be used to calculate the
generating function of the monoid.

Definition 10 (Monoid Generating Function [22]):

1

D(G, z)
=

∞∑
n=0

τG(n)zn. (8)

The relationship between the partially commutative monoid
and the strong product of graphs was described in [1]. The ad-
jacency graph of the channel was interpreted as a commutative
graph, giving rise to Lemma 1.

Lemma 1 ([1]): If two words of length n belong to the
same equivalence class according to G, then they are con-
nected in Gn and are confusable.

By combining the Lemma 1 and the concept of monoid
growth factor, the authors in [1] arrived at an upper bound for
the classical zero-error capacity of a channel represented by
an adjacency graph G. This result is expressed in Theorem 4.

Definition 11 (Monoid Growth Factor):

β(G) = lim
n→∞

τG(n)
1
n . (9)

The value β(G) also corresponds to the inverse of the
smallest real root of the dependence polynomial D(G, z).
When 1/β(G) is a root with multiplicity 1, it is possible to
perform the approximation τG(n) ∼ β(G)n. For this reason,
β(G) ć is known as the monoid growth factor. The notation
f(n) ∼ g(n) denotes limn→∞

f(n)
g(n) = 1 (see [23]).

Theorem 4 (Upper Bound for Classical Zero-Error Capacity):

C0(G) ≤ logbβ(G)c (10)
It has been shown[1] that for cyclic graphs Ck it is true that

α(Ck) ≤ ϑ(Ck) ≤ bβ(Ck)c. (11)

However, the general relationship between these properties
was not found by the authors in [1].

III. UPPER BOUND FOR QUANTUM ZERO-ERROR
CAPACITY

In this section, we extend the results presented in [1] by
presenting the relationship between bβ(G)c, the Lovász num-
ber ϑ(G) and the chromatic number χ(G). The relationship is
presented in Theorem 5.

Theorem 5: Let G be a graph, then

bβ(G)c ≥ χ(G). (12)
Proof: Using the Lemma 1, it is known that words

of length n congruent in M(Σ, G) are connected in Gn.
Thus, the equivalence classes E(ui), with |ui|= n, correspond
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to cliques in Gn and, consequently, to stable sets in Gn.
Therefore, there are at most τG(n) unconnected vertices in
Gn. Since the elements of a stable set can be colored using
the same color, it would take at most τG(n) colors to properly
color Gn, i.e. τG(n) ≥ χ(Gn). By using the fact that χ(Gn) ≤
χ(G)n (see [24]), we get τG(n) ≥ χ(G)n. Consequently,
β(G) ≥ χ(G) and, knowing that χ(G) is a natural number,
we get bβ(G)c ≥ χ(G).

From Theorem 5, the Lovász sandwich theorem (see The-
orem 1) can be supplemented with one more layer

α(G) ≤ ϑ(G) ≤ χ(G) ≤ bβ(G)c, (13)

where obtaining β(G) is also, in general, a problem of the NP-
complete complexity class because it involves the dependence
polynomial.

In this way, the relationship between β(G) and the quantum
zero-error capacity can be established, as stated in Theorem 6.

Theorem 6:

C(0)(E) ≤ logbβ(G)c (14)
Proof: It follows from Theorem 5 and the fact that

C(0)(E) ≤ log ϑ(G) [10].
Note that Theorem 4 could be proved similarly. In both

cases, log ϑ(G) is an upper bound for the zero-error capacity.
The quantum case is more delicate because it requires search-
ing among the states of a set of input states, and these states
define the adjacency graph.

Whereas quantum zero-error capacity is a QMA-complete
problem, calculating β(G) involves an NP-complete prob-
lem and can be calculated for several families of graphs.
Additionally, calculating β(G) only requires the adjacency
graph, unlike the zero-error capacity which involves the strong
product of G. In this context, we will provide some examples
of how to calculate bβ(G)c.

Example 1 (Complete and Empty Graphs): These graphs
are perfect and we know that β(Sk) = α(Sk) [1].

Example 2 (Cycle Graphs): For cyclic graphs Ck, k ≥ 4,
β(Ck) is given by

β(Ck) =
1

2

(
k +
√
k − 4

√
k
)
. (15)

In addition, for odd k ≥ 3, we have that

χ(Ck) =
k + 1

2
(16) ϑ(G) =

k cos (π/k)

1 + cos (π/k)
. (17)

Lovász [9] showed that C0(C5) = ϑ(C5) = 1
2 log 5.

However, the zero-error capacity of channels with Ck as an
adjacency where k is an odd number greater than 5, remains
unknown. In general, for odd k and k ≥ 5, the graphs Ck are
non-perfect, according to Theorem 2.

The comparison between some values of bβ(Ck)c, ϑ(G)
and χ(Ck) is shown in Figure 1.

By using Eq. (15), Eq. (16) and Eq. (17), we can show that
the asymptotic behavior of bβ(Ck)c, ϑ(Ck) and χ(Ck) have
the following property

lim
k→∞

β(Ck)

ϑ(Ck)
= lim

k→∞

β(Ck)

χ(Ck)
= 2. (18)
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Fig. 1: Values of bβ(Ck)c considering cyclic graphs of k
vertices, ϑ(G) and χ(Ck) for k odd, 3 ≤ k ≤ 11.
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Fig. 2: Star Graphs Sk, k = 3, 4, 5, 6.

Example 3 (Star Graphs): Star graphs, represented by Sk

with k > 1, have k vertices and k − 1 edges. Figure 2 shows
some examples of this graph.

The chromatic number of Sk is χ(Sk) = 2 and ω(Sk) = 2,
so these graphs are perfect. To find the chromatic number of
Sk, it should be noted that the complement of Sk will consist
of a complete graph Kk−1 and a vertex that is disconnected
from all the others. This means that at least k − 1 colors are
needed to properly color Sk , so χ(Sk) = k − 1.

In addition, the dependence polynomial of Sk will be

D(Sk, z) = 1− kz + (k − 1)z2, (19)

in such a way that

τSk
(n) ∼ (k − 1)n (20)

and therefore,
β(Sk) = (k − 1). (21)

In this case, β(Sk) = χ(Sk). Since the graphs Sk are
perfect, then β(Sk) = χ(Sk) = ϑ(Sk) = α(Sk).

It appears that there is a higher likelihood of bβ(G)c being
equal to χ(G) when G is a perfect graph, based on the
examples. However, we found that even for perfect graphs,
it is not always the case that bβ(G)c = α(G), as shown in
the following example.

Example 4 (King Graph): The graph Gk represents a k ×
k chessboard, showing the king’s possible moves. Figure 3
displays examples of these graphs.

It is possible to obtain the dependency polynomial of these
graphs by inspection as

D(Gk, z) = 1−k2z+(2k−2)(2k−1)z2−4(k−1)2z3+(k−1)2z4.
(22)

The analytical expression for τG(n) as a function of k
becomes increasingly large and complex for larger values of
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k = 2 k = 3
k = 4

k = 5

Fig. 3: King Graphs Gk, k = 2, 3, 4, 5.

k. Therefore, we use k = 3 as an example and

D(G3, z) = 1− 9z + 20z2 − 16z3 + 4z4. (23)

The smallest real root of D(G, z) is approximately z ≈
0.16243, so τG3

(n) ∼ 6.1565n and bβ(G3)c = 6. On the
other hand, it is known that

α(Gk) =
⌊k + 1

2

⌋2
, (24)

and that the graphs Gk are perfect, according to Theorem 2.
In particular, χ(G3) = 4 and α(G3) = 4 so that bβ(G3)c >
χ(G3).

Based on Theorems 5 and 3, it is established that for a
constant ε > 0, there exists an infinite family of graphs with
k vertices where bβ(G)c > ϑ(G)k1−ε. It has been noted that
non-perfect graphs, like cyclic graphs with k ≥ 5 and odd k,
exhibit a gap proportional to n between bβ(G)c and ϑ(G).
By using the king’s graph with k = 3, it follows that perfect
graphs also have a gap proportional to n between bβ(G)c and
ϑ(G). For cyclic graphs, it is established that χ(Ck) = k/2
for even k and bβ(Ck)c > χ(Ck). This leads to the conjecture
that there exists an infinite family of graphs and a ε > 0 for
which bβ(G)c > χ(G)k1−ε.

IV. CONCLUSIONS

In this article, we explore partial commutation relations and
zero-error theory. We show that β(G) is an upper bound of
the chromatic number χ(G) of the complement of G and,
consequently, of the Lovász number ϑ(G) of a graph G.
From this, we also show that it is possible to use β(G) to
determine an upper bound for the zero-error capacity of a
quantum channel with adjacency graph G employing C0(E) ≤
logbβ(G)c. We show that this bound may not be tight even if
the graph G is perfect.

As future work, we intend to identify which families of
graphs have β(G) = χ(G) and answer the conjecture whether
there is an infinite family of graphs in which bβ(G)c > χ(G).
In addition, one can investigate applications of bβ(G)c as an
upper bound of χ(G), which also has applications in quantum
information theory.
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