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Base Station Deployment Optimization in Integrated Access
and Backhaul Networks Using Evolutionary Algorithms

Fco. Italo G. Carvalho, Igor B. Palhano, Tarcisio F. Maciel, Raul V. de O. Paiva

Abstract— Integrated access and backhaul networks are a good
solution for fifth gerantion networks, due to its potential to
increase the bandwidth used for wireless connections and a low
implementation cost compared to other solutions. In order to
solve the problem of positioning bases, in the proposed work we
optimized an Integrated access and backhaul network to increase
the spectral efficiency for different proportions of macros and
small base stations and, for this, we used genetic algorithm
and particle swarm optimization. The results obtained show
that for all scenarios it is possible to obtain a high spectral
efficiency, however, for scenarios with low proportions of small
base stations, genetic algorithm shows high performance, while
in the scenario of high proportions particle swarm optimization
converges to values close to those of genetic algorithm. Thus, we
conclude that the algorithms used solve the proposed problem
and that for a high proportion of small base station, particle
swarm optimization becomes an attractive solution due to its
high proximity to the results obtained via genetic algorithm and
its lower computational complexity.

Keywords— Integrated access and backhaul, 5G-NR, base sta-
tion deployment, evolutionary algorithms, spectral efficiency

I. INTRODUCTION

The sustained expansion of data traffic over time, primarily
propelled by the ongoing widespread adoption of smartphones
and a rising average data volume per subscription has been
fueling fifth gerantion (5G) network growth. Between the
fourth quarter of 2022 and the fourth quarter of 2023, mobile
data traffic grew 28%, reaching almost 1.6 billion subscriptions
worldwide [1].

To aid 5G deployment in meeting the increasing demand
for high-speed data transmission, Integrated access and back-
haul (IAB) networks are particularly relevant, providing more
flexible and scalable solutions due to their cost-effectiveness
and fast deployment [2]: This is achieved due to their wireless
communication infrastructure, designed to efficiently support
access and backhaul functionalities, which traditionally have
been deployed separately, within a single network architecture,
reducing costly and some times unfeasible wired network
infrastructures.

For instance, the wireless backhaul capability of long
term evolution (LTE) networks has been deemed not flexible
enough, as it only allows for a rigid allocation of the resources,
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with the relay [3] associated with a fixed parent base station
(BS) [4]. However, this separation can lead to infrastructure
deployment, management, and utilization inefficiencies.

IAB, in the context of 5G networks, empowers the usage
of radio resources for backhaul by making use of the wider
bandwidths of millimeter wave (mmWave) paired with the
directivity of massive multiple-input multiple-output (MIMO),
providing higher transmit rates, and also enabling multihop,
flexible topology and dynamic resource sharing [2].

Still, employing a wireless backhaul brings many chal-
lenges, such as making the network potentially more vulner-
able to propagation phenomena. These losses however can
be mitigated by proper network planning in order to achieve
suitable cost-benefit trade-offs [5].

More commonly, in IAB networks the macro base stations
(MBSs) are referred to as IAB donors, representing not only
their higher transmission power but also their connection to
the core network (CN) by a wired backhaul and their back-
haul providing capabilities to the small base stations (SBSs),
therefore called IAB nodes due to their lower transmission
power and wireless backhaul, as in [2], [5], [6]. For a more
detailed discussion about IAB networks see [2].

To analyze the cost-benefit balance between IAB donors and
IAB nodes, we evaluate different deployment scenarios with
varying positioning and IAB nodes to IAB donors ratios, since
they play a crucial role in ensuring quality of service [5]. Op-
timization techniques such as evolutionary algorithms (EAs)
have then been used to optimize network planning, offering
efficient solutions based on network metrics.

The work presented in [7] shows a single objective opti-
mization problem (SOOP) for network power allocation in
IAB networks, obtaining good results in a two-hop scenario
with 28 GHz center frequency. In [6], the authors show that
it is also possible to use genetic algorithm (GA) to optimize
an IAB network in a propagation scenario similar to the one
presented in [7]. Here the authors show the vital importance of
base station deployment (BSD) for IAB networks, as well as
demonstrate that it is possible to use EA techniques to solve
the BSD problem.

In [8], the authors’ main objective was to demonstrate
that particle swarm optimization (PSO) has reasonable per-
formance for positioning several BSs in a real urban scenario,
considering the combination of capacity and network balance
as maximization criteria.

In [5], a GA was used to optimize BSD and compare the
cost-benefit of IAB in four different scenarios with varying
percentages of IAB donors and IAB nodes, as well as varying
the total amount of BSs.

The present work is meant as a continuation study to [5].
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Here we also analyze the planning of IAB networks using
EAs, but primarily focusing on the suitability of different
optimization algorithms as BSD planning tools and under new
conditions, namely user equipment (UE) hotspots instead of
uniform random positioning, and a more rigorous channel
model. In [6], [7] IAB networks are studied more thoroughly
but only using GA, in [9] the authors evaluate PSO for BSD
optimization in a metropolitan area, while in this work we
focus mainly on the BSD of IAB networks using both GA
and PSO as well as comparing their performances.

The remainder of this article is organized as follows. Sec-
tion II describes our adopted system model, including the sce-
nario in Subsection II-A, the channel model in Subsection II-
B and the optimization algorithms used in Subsection II-
C. Section III presents our simulation assumptions and the
analyses of the obtained results. Finally, in Section IV, we
draw some conclusions about the results and discuss future
perspectives.

II. SYSTEM MODEL

A. Scenario

In this work, a 5G network is deployed to provide commu-
nication service in a region R of area L×L square meters, to
a number K of UEs, a fraction of which will form N circular
hotspots with radius r and UE density λ in the region R, while
the remaining UEs will be distributed uniformly according
to Algorithm 1. The hotspot positioning Algorithm 1 works
by sorting the hotspot UEs positions around N randomly
select non-hotspot UEs. Fig. 1 shows a network deployment
generated after the optimization process where there are 3 UE
hotspots showed as a Voronoi diagram [10].
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Fig. 1. An IAB network deployment is shown as a Voronoi diagram of the
IAB donors and nodes with the inside and outside hotspot UEs.

We consider that the network has several cells C = B + I ,
where B are the cells served by IAB donors, connected
directly to the CN through a wired backhaul and I are the
cells served by IAB nodes, which deploy wireless backhaul
therefore connecting to an IAB donor itself to provide com-
munication service to its UEs. In this work, only single-hop
and two-hop connections are considered, meaning a UE either

Algorithm 1 Hotspot generation.
1: procedure HOSTSPOT POSITIONING(K, N , λ, r)
2: n_UEs ← λ · r/N ; ▷ number of UEs per hotspot.
3: UEs = K − n_UEs positions; ▷ Non-hotspot UEs
4: i← 0;
5: while i < N do ▷ iterate through hotspots
6: pos ← random position of UEs;
7: while j < n_UEs do
8: rp← random position;
9: UEs ← append pos+rp with |pos-rp| < r;

10: j ← j + 1;
11: end while
12: i ← i + 1;
13: end while
14: end procedure

connects directly to an IAB donor or connects to a single IAB
node that, in turn, connects to an IAB donor.

B. Channel Model

Let hk,m be the channel coefficient for every link between
k-th UE and m-th BS. We assume that the UE will be
connected to the closest BS, and it is completely transparent
to the UE whether it is an IAB donor or an IAB node and
every BS and UE has one antenna. The interaction between
UEs and BSs in the first and second hop ares as in [5]. Let d
be the distance between the k-th UE and the m-th BSand d1
and d2 be two threshold distances, the average path loss on
logarithmic scale Lk,m(d) is generated as

Lk,m(d) = −140.7− 15 log10(d2)− 20 log10(d1), if d ≤ d1,

Lk,m(d) = −140.7− 15 log10(d2)− 20 log10(d), if d1 ≤ dk,m ≤ d2,

Lk,m(d) = −140.7− 35 log10(d), if d ≥ d2. (1)

In this work, we utilized correlation shadowing on a log-
arithmic scale Gχk,m

for each k UE and m BS, similar to
the model used in [11, Section 4], with shadowing standard
deviation σs. Let ζk,m be the large-scale fading variable in
logaritimic scale for the k-th UE and m-th BS constructed as

ζk,m = Lk,m(d) +Gχk,m
. (2)

Let ψk,m be the large scale fading ζk,m in linear scale (i.e,
ψk,m = 10

ζk,m
10 ). The correlation matrix R will be constructed

as presented in [12, eq. 2.18]

Rk,m = ψk,m

∫ π

−π

ej2πdk,m cos(θ)dθ, (3)

where θ is the azimuth angle and Rk,m is the correlation
element between the k-th UE and the m-th BS. Finnaly, in
this work we consider only the Rayleigh fading hk,m, therefore
obtained by the product of Rk,m and a Rayleigh-distributed
variable with standard deviation σf

hk,m = Rk,mR(σf ). (4)

Following [5], the proposed signal to interference-plus-noise
ratio (SINR) is modeled as
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γt,r =
pt,rgt,r∑

t′ ̸=t pt′,rgt′,r + σ2
n

, (5)

where σn is the noise standard deviation, gt,r and pt,r repre-
sent the link gain and transmission power between the t-th BS
and r-th UE.

As in [5], in order to make comparisons fair, the link
capacities are considered per hop. Let κ = {1, 2, . . . ,K} be
the set of UEs, β = {1, 2, . . . , B} and Υ = {1, 2, . . . , I}
be the sets of IAB donors and nodes respectively, therefore
ζ = β ∪Υ = {1, 2, . . . , C} is the set of BSs. In the first hop
t, t′ ∈ β and r ∈ Υ ∪ κ, the IAB donors transmit while their
UEs and the closest IAB nodes receive, and for the second
hop t, t′ ∈ ζ and r ∈ κ, meaning IAB donors and nodes
transmit to their UEs.

To calculate the capacity Ct,r of each link, Shannon’s
formula is used [13]. Let C(1)

t,r and C
(2)
t,r be the channel

capacities of the first and second hops, respectively, for UEs
connected to IAB donors, t ∈ β and r ∈ κ, the channel
capacity is defined as

Ct,r =
C

(1)
t,r + C

(2)
t,r

2
. (6)

For UEs connected to IAB nodes, t ∈ Υ and r ∈ κ, the
bottleneck between the two links, either IAB donor to IAB
node or IAB node to UE, is considered as shown in (7).

Ct,r = min{C(1)
t,r , C

(2)
t,r }. (7)

C. Optimization Algorithms

Network planning is vital to guarantee good quality of
service (QoS) for IAB networks. Therefore, investigating
different planning tools’ suitability not only in terms of high-
quality solutions and effectiveness but also complexity and
efficiency is imperative. Two EAs are then used to optimize
BSD and give the highest spectral efficiency (SE), namely GA,
and PSO, considering their intuitivety and ease of use [14],
[15].

An EA, is a computational model of a natural evolution
process designed to solve problems [14]. It works by having
a population P of structures, possible solutions to a problem,
which changes mimicking a natural process as to find even
better solutions. For that purpose, each individual, one of such
structures, is measured in terms of how well it solves the
considered problem by means of its fitness ffit(·).

GAs is a branch of EAs that can be defined as a global
optimization technique based on the biological process of
evolution [14]. Based on the fitness metric, the natural selec-
tion process includes the population in order to simulate the
survival of the fittest through the genetic operators, namely
reproduction and mutation, among others. The main objective
is then to search in the population for the individuals with
the best characteristics to combine them and form even better
individuals until sufficient time has passed (a number G of
generations) or a satisfactory solution is found [14]. For a
more detailed discussion about GAs see [5, Section 2B].

The PSO algorithm is a stochastic optimization technique
based on simulating animal social behavior. It works by having
a population (the swarm) of individuals (particles) representing
possible solutions to a problem. Each particle remembers
their optimal position and velocity, defined by their fitnesses
ffit(·), as well as those of the swarm as they move in the
search space [16]. Each generation combines the particle’s
information in order to adjust their velocities which are then
used to compute their new positions as they change their
state until they reach the optimal state or sufficient time has
passed [16].

In this work, considering a GA population or PSO swarm
of individuals and particles consisting in a network realization,
the fitness function ffit(·) is defined as the sum of each link
SE. Therefore we maximize the overall bit rate, calculated as
discussed in Subsection II-B per unit of bandwidth.

III. RESULTS AND ANALYSIS

For the simulations, we considered a region R with area
0.49 km2 with C = 10 cells, where L was calculated from
the link budget for the proposed scenario. We calculate for the
strictest regime, i.e., dk,m ≥ d2, the target signal noise ratio
(SNR) of 0 dB at the cell edge, the average distance for each
scenario, thus a parameterized distance for the proposed study.
A total number of K = 60 UEs is distributed both inside and
outside N = 3 hotspots following Algorithm 1 over the region
R. Variable percentages p% of the BSs are considered to be
IAB nodes with the remaining (100− p)% of them becoming
IAB donors. A shadowing standard deviation of σS = 8 dB is
considered, while the noise power, IAB donor and IAB nodes
transmit power were −91 dBm, 35 dBm, 24 dBm respectively.

Each scenario was optimized for S = 40 snapshots in-
dependently, i.e. independent Monte Carlo realizations, and
each realization was comprised of populations of P = 100
individuals evolving along G = 100 generations/iterations.
The GA optimization parameters were, as in [5], single cutting
point crossover, roulette wheel for the parent selection, and
a 0.4% mutation rate. As for the PSO, the inertial weight,
cognitive or persistence factor, and the social factor were 1, 1,
and 2, respectively, as in [9]. The most important simulation
parameters are presented in Table I.

In Fig. 2, the median SEs of all generations of GA and
iterations of PSO is shown. Each graph shows the percentage
p of IAB nodes for GA and PSO, where the solid curve
represents the values reached at the 50◦ percentile for both
algorithms, while the corresponding surrounding light regions
refer to the standard deviations obtained in the simulations.

It is important to note that for all the percentages p
simulated, both algorithms start approximately with the same
average SE range. We can see that for the three simulated
scenarios, GA and PSO perform quite similarly, with GA
being a bit better except for the p = 70% scenario. This
likely happened because for higher IAB node percentages
the network becomes more susceptible to the propagation
phenomena as modeled by (7), meaning IAB nodes need to be
positioned more closely to their donors in order to avoid bad
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TABLE I
SIMULATION ASSUMPTIONS.

Parameter Symbol Value

Grid

Coverage area R 0.49 km2

Number of BSs C 10
Percentage of IABs nodes p 30%, 50%, 70%
Number of UEs K 60
Number of hotspot UEs 20
Number of hotspots N 3
Monte Carlo realizations S 40

Link and propagation

Path loss Lk,m(dk,m) Cf. (1)
Shadowing σs 8 dB
Shadowing parameter ϵ 0.5
Fast fading hi,j Cf. (4)
IAB donor power 10 log10(pi,j) 35 dBm
IAB node power 10 log10(pi,j) 24 dBm
AWGN power 10 log10(σ

2
n) −91 dBm

genetic algorithm

Number of individuals P 100
Number of generations G 100
Fitness ffit(·) Sum of SEs
Mutation rate αm 0.4% [14]
Crossover parent selection — Roulette wheel [5]
Reproduction rule — Single cutting point [5]

particle swarm optimization

Number of particles P 100
Number of iterations G 100
Fitness ffit(·) Sum of SEs
Inertia weight ω 1 [9]
Persistence c1 1 [9]
Social influence c2 2 [9]

backhaul links, while at the same time there are fewer IAB
donors simplifying their positioning, which leads to an easier
PSO process.
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Fig. 2. Median SE over 40 Monte Carlo snapshots along of the genera-
tions/iterations of GA/PSO algorithms.

TABLE II
MEDIAN SES FOR EACH SCENARIO AT THE LAST GENERATION.

IAB nodes percentage 30% 50% 70%
GA [bits/s/Hz] 9.98 10.28 10.63
PSO [bits/s/Hz] 8.66 8.85 10.21

Quantitatively, for the GA optimization, the ideal median
SEs per BS obtained was approximately 9.98 bits/s/Hz,
10.28 bits/s/Hz and 10.63 bits/s/Hz for p = 30%, p =
50% and p = 70%, respectively, while for PSO they were
8.66 bits/s/Hz, 8.85 bits/s/Hz and 10.21 bits/s/Hz in the
same order, as shown in Table II. Based on these results, we
can see that there is an initial percentage difference of 13%
for the first two scenarios analyzed, while for the last one,
there is a difference of around 3% between the SE obtained
via GA and PSO.

In Fig. 3 the 50◦ percentile of SINRs obtained for GA and
PSO, green and orange bars, per scenario are shown. We also
include the median SINR of a random BS deployment, the
blue bar, as a representation of an unplanned BS placement.

It is possible to note that the median SINR for the random
deployment were approximately 1.29 dB, 1.74 dB and 2.79 dB
for p = 30%, p = 50% and p = 70%, respectively.
Analogously, the PSO median SINR values were 26.07 dB,
26.64 dB and 30.71 dB for p = 30%, p = 50% and p = 70%,
while the GA algorithm obtained the highest median SINR
values: 30.04 dB, 30.95 dB and 31.99 dB in the same order.

We can see that both algorithms perform a lot better than
the unplanned case, as expected, increasing the median SINR
by at least 24.77 dB, a huge improvement. The difference in
performance between GA and PSO was not as significant,
being 3.97 dB, 4.31 dB and 1.27 dB for p = 30%, p = 50%
and p = 70%, respectively, showing once again that the PSO
algorithm performance improved for the p = 70% scenario.

Therefore, as shown in Fig. 3, Fig. 2 and Table II, both PSO
and GA proved to be quite effective planning tools, shown to
provide large gains compared to an unplanned deployment.
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Fig. 3. Median SINRs obtained for GA/PSO and random deployment per
scenario.
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Fig. 4. Convergence obtained for the median GA/PSO algorithms genera-
tions/iterations in each scenario.

In Fig. 4 the convergences of the median iterations of the
GA and PSO algorithms, green and orange curves, respec-
tively, are shown for each scenario p = 30%, p = 50% and
p = 70%. The convergence metric is taken as the difference
between the generation maximum SE and the final result
of the optimization process. In all scenarios, we can notice
that the PSO algorithm converges faster than the GA, but, as
we increase the percentage p of IAB nodes, their behaviour
becomes more similar, as we have also observed in Fig. 2
and Fig. 3.

So, despite achieving lower results overall, specially for
lower percentages of IAB nodes, PSO is still a viable option,
since it was found to be more efficient in that it tends to have
better convergence as shown in Fig. 4, and also in a plethora
of different problems [17].

Interestingly, in Fig. 2 we can see that as the percentage
p of IAB nodes increases the same happens with the SEs,
which likely occurs due to the lower interference caused by
the lower power of IAB nodes which was also observed in [5].
This evidences once more the suitability of IAB networks as a
way of providing more flexibility and cost-effectiveness when
deployed with careful planning.

IV. CONCLUSIONS

In this work, the performance of two EA, GA and PSO, for
SOOP were compared, considering BSD of an IAB network as
the optimization problem and the median SE per BS and SINR
as the quality metrics. It was possible to conclude that, despite
the higher SE generated by GA, the PSO algorithm proved to
be also a good option due of its efficiency. There is no single
optimal heuristic algorithm for the BSD problem addressed
in this work, each one having its own trade-offs, given the
complexity of the problem in question and the efficiency of
the algorithms for different optimization scenarios.

It was also discussed that as the number of lower power
IAB nodes increased, network performance improved likely
due to the lower interference, which prompts us to consider,
as a future perspective, the analysis not only of the BSD but
also the energy efficiency of IAB networks, in the optimization
process. Furthemore in this work only a random strategy was
used for BSD, leaving other more realistic approaches to be
used in future works.

Another future perspective is to analyze the robustness of
the techniques used here in scenarios with more realistic and
channel state information (CSI) to investigate more closely the
suitability of the usage of heuristics as real network planning
tools.
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