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Abstract— The goal of 5G technology is to support new services
based on three main usage scenarios: (I) eMBB (Enhanced
Mobile Broadband), (II) mMTC (Massive Machine Type Com-
munication), and (III) URLLC (Ultra-Reliable Low Latency
Communication). To provide better signal processing within the
network, this research aims to propose the implementation of
the Low-PHY layer functions of the Distributed Unit (DU) in
5G on hardware (FPGA), leveraging the capabilities of the Open
Computing Language (OpenCL). This framework is compatible
with heterogeneous computing environments, enabling parallel
processing. Since OpenCL programming allows a single program
written by the host to be executed across different heterogeneous
platforms, it becomes feasible to allocate specific functions to
run on the FPGA or other hardware while others run on the
CPU, thereby reducing the processing load on the processing
unit. Consequently, the processing time of signal samples will
decrease.
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I. INTRODUCTION

Since 2G wireless networks, Radio Access Network (RAN)
architectures have been based on monolithic blocks, where
functions are contained in boxes called Baseband Units
(BBUs), at the base of radio towers, where signal processing
takes place. From the initial phases of the New Radio (NR)
of 5G, an attempt was made to disaggregate the BBUs into
distributed units (DUs) and centralized units (CUs). The
rationale for this was flexibility, allowing network operators to
decide where to position processing functions and maximize
performance, as well as more cost-effective network deploy-
ment. [1]

The 5G structure establishes a highly adaptable and versatile
network technology that creates a robust cloud-native mobile
network, enabling comprehensive backing for network seg-
mentation. Its objective is to facilitate novel services through
three primary usage scenarios: (1) enhanced mobile broad-
band (eMBB), enhancing broadband accessibility, accelerating
connections, and elevating resolution; (2) massive machine-
type communications (mMTC), catering to densely connected,
cost-effective, and energy-efficient IoT devices; and (3) ultra-
reliable low-latency communications (URLLC), catering to
critical applications necessitating minimal latency and max-
imal reliability.
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Fig. 1
THE LTE PROTOCOL STACK WITH LAYERS AND SUBLAYERS, INCLUDING

THE NUMBERED FUNCTIONAL SPLIT OPTIONS PROPOSED BY THE 3GPP
[2]

The 3rd Generation Partnership Project (3GPP) proposed
eight functional division options, including several sub-
options. The red lines in Figure 1 illustrate different options
for functional divisions. The functions below the red line will
be those implemented in the DU, and the functions above
the red line will be implemented in the CU. The functions
in the DU are very close to the user, as they will be located
on the antenna mast, and those located in the CU will benefit
from centralization and high processing power. Thus, the more
functions located in the DU, the more processing has already
been done before the data is transmitted in the fronthaul
network. [2]
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To achieve results that meet the needs of each 5G category,
it is necessary to have fast and enhanced signal processing in
certain specific blocks of the architecture, to achieve greater
offered bandwidth, extended coverage, reduced latency, among
other objectives referred to by the 3GPP as Key Performance
Indicators (KPIs). [3]

This work proposes the implementation of an hardware-
based SmartNIC to be installed within the edge cloud micro
data center, positioned near the antenna site housing a DU, to
enhance the performance of gNB Low-PHY functions. Specif-
ically, the targeted functions for offloading include the Inverse
Fast Fourier Transform (IFFT) and the addition of Cyclic
Prefix (CP) for Orthogonal Frequency Division Multiplexing
(OFDM) in downlink transmission. The Open Computing
Language (OpenCL) was chosen to implement the functions,
where a single host can interact with one or more devices using
only one program running on these heterogeneous platforms.

II. LITERATURE REVIEW

There are many works that exploit the use of OpenCL
framework on hardwares, mainly on FPGAs, for diverse appli-
cations, like acceleration techniques for 5G functions, image
processing and cryptography.

The paper from [4] provides an overview of using OpenCL-
based hardware acceleration techniques to implement com-
putationally intensive 5G functions, specifically the Inverse
Fast Fourier Transform (IFFT) and Cyclic Prefix Addition. It
discusses how OpenCL can be used to offload these functions
onto reconfigurable hardware like FPGAs and GPUs, which
can provide significant performance improvements compared
to general-purpose CPUs. It covers optimization techniques
like exploiting data parallelism, loop unrolling, and using
sliding windows to improve pipeline throughput. The ability to
accelerate critical 5G functions in hardware is an important en-
abler for the virtualization and cloud-native deployment of 5G
networks. By offloading computationally intensive tasks, it can
help meet the low-latency and high-throughput requirements
of 5G while also reducing power consumption and costs.

The work from [5] presents an FPGA accelerator design
for the transform and quantization functions of the new
H.266/Versatile Video Coding (VVC) standard, implemented
entirely using an OpenCL-based high-level design approach.
VVC significantly increases the computational complexity
compared to previous video coding standards like HEVC,
particularly in the intra-frame coding part. The authors lever-
age the flexibility and parallelism of OpenCL to design a
modular, pipelined accelerator architecture that can efficiently
implement the required 2D DCT, quantization, and inverse
operations. By exploiting data-level parallelism within each
kernel and pipeline-level parallelism across kernels, the FPGA
implementation achieves processing speeds ranging from 6.5
to 83.3 frames per second, with an average of 16.1 fps - a
3.22x speedup over a CPU-only implementation.

Another work, reported in [6], presents an OpenCL-based
methodology for efficiently implementing pipelined architec-
tures of the real-valued Fast Fourier Transform (RFFT) on
FPGA platforms. RFFT is an ideal candidate for high-speed,

Fig. 2
LOW-PHY LAYER PROTOCOL TO BE IMPLEMENTED IN HARDWARE

low-power FFT processing as it requires approximately half
the number of arithmetic operations compared to traditional
complex-valued FFT (CFFT). The authors identify a regular
computational pattern in the RFFT signal flow graph and
design corresponding butterfly structures. They also develop
novel twiddle factor access schemes to enable efficient pipelin-
ing. By encoding the RFFT algorithm in a single for-loop, the
OpenCL compiler can fully unroll the loop to automatically
construct the pipelined architecture. Experiments show that
the proposed RFFT implementation on an Intel Stratix-10
FPGA achieves a 1.48x speedup over an Intel CFFT design on
the same FPGA, while consuming 12% less logic resources
and 16% fewer DSP blocks. Compared to GPU and CPU
FFT libraries, the FPGA-based RFFT demonstrates significant
advantages, with 2.49x and 21.12x speedups over CUFFT and
FFTW respectively, along with 3.09x and 16.09x better energy
efficiency.

III. CONSIDERED FUNCTIONS DEPLOYMENT

The offloaded functions on the SmartNIC, presented by
Figure 2, will operate as follows: in the downlink direction,
the in-phase and quadrature (IQ) signal samples, consisting of
the real part and the complex part in the frequency domain,
arrive at the hardware (FPGA) and undergo IFFT to convert the
samples to the time domain. The cyclic prefix (CP) is inserted
as a guard interval to prevent intersymbol interference (ISI). In
the uplink direction, the IQ signal samples in the time domain,
including the cyclic prefix, are received, the guard interval
is removed, followed by the FFT operation that converts the
samples to the frequency domain. The insertion/removal of
the cyclic prefix is performed by adding/removing redundant
bytes before each symbol of Orthogonal Frequency Division
Multiplexing (OFDM). [7]

For this research, the considered OFDM structure, in Fig-
ure 3, uses the modulation scheme known as Quadrature
Amplitude Modulation (QAM). In the conventional OFDM
modulator, the modulated symbols are converted from serial
to parallel format, and then mapped onto the subcarriers
of the OFDM system. After that, the Low-PHY functions
discussed before, IFFT and CP addition, are applied. The
insertion of the cyclic prefix is to mitigate ISI caused by
multipath propagation. Finally, the OFDM symbol with CP
is then transmitted over the wireless channel.
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Fig. 3
OFDM TRANSCEIVER

In the receiver, the process is inverse, applying the CP
removal and Fast Fourier Transform (FFT) with a factor of
2N, followed by equalization and signal demodulation.

The integration of FFT/IFFT stands out as a pivotal element,
representing the most intricate and resource-demanding seg-
ment within the Orthogonal Frequency Division Multiplexing
(OFDM) framework. FFT represents a refined computation
method of the Discrete Fourier Transform (DFT), achievable
through the application of the following formula:

Xk =

N−1∑
n=0

xne
− 2πi

N kn =

N−1∑
n=0

ωknxn (1)

where Xk are the samples in the frequency domain, xn are
the samples in the time domain, N is the number of FFT/IFFT
points, and ωkn is the twiddle factor.

In papers such as [8], [9] and [10], the authors explore
the use of different FFT algorithms that use different radix
numbers. One of them is the Radix-2 algorithm, a type of
FFT calculation that decomposes the DFT into smaller DFTs,
reducing computation time. The Radix Butterfly configuration
divides FFT computation into different stages, where the
higher the Radix number, the fewer stages required, but with
more complex twiddle factors. For example, to compute a 16-
point FFT using radix-2, four stages will be required, but with
twiddle factors at angles 0° and 180°. On the other hand, to
compute a 16-point FFT using radix-4, only two stages will
be needed, but with twiddle factors at angles 0°, 90°, 180°,
and 270°. [7]

The Radix-2 algorithm separately computes the DFTs of the
input values with even indices (x0, x2, ..., xN−2) and those
with odd indices (x1, x3, ..., xN−1), then combines these two
results to produce the DFT of the entire sequence. This concept
can be recursively applied to reduce the total computation time
from O(N2) to O(N logN). This algorithm requires that N be
a power of 2.

To implement Radix-2, the main formula of the DFT is
divided into two parts: a sum over indices numbered with even
values and a sum over indices numbered with odd values:

Xk =

N
2−1∑
m=0

x2me−
2πi
N (2m)k + e−

2πi
N k

N
2−1∑
m=0

x2m+1e
− 2πi

N (2m)k

(2)
Let’s denote the DFT of the input values with even indices

as Ek and the DFT of the input values with odd indices as
Ok, then we obtain:

Xk =

N
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m=0

x2me
− 2πi

(N
2

)
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+ e−
2πi
N k

N
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m=0

x2m+1e
− 2πi
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2
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(3)

Ek + e−
2πi
N kOk (4)

With the functions Ek and Ok of k being periodic with a
period of N/2. [11]

Therefore, by splitting the DFT into reduced sums, we
achieve faster computation of the transform, thus reducing
processing time.

IV. OPENCL FRAMEWORK

The programming of this proposed work will be done
using the OpenCL framework [12]. It enables reconfigurable
computing applications and is applicable across different ar-
chitectures, from CPUs and GPUs to FPGAs. While each
platform requires specific optimizations, a single OpenCL code
can be applied across all of them, enhancing scalability. More-
over, OpenCL offers various features that leverage parallelism
to improve performance and processing time, such as loop
unrolling, reduction of function calls, and maximizing global
memory bandwidth. [13][14]

Despite processing on the hardware, the system will still
require a computer to function as a controller, as the OpenCL
language mechanism follows the master-slave approach, where
a host software (computer) controls the execution of the
OpenCL program (kernel) within a computing device (FPGA)
supporting the OpenCL framework. Before initiating its rou-
tine, the host must initialize the context and communication
with the device, all made possible through the OpenCL Ap-
plication Programming Interface (API).

V. RESULTS AND DISCUSSIONS

As shown in Figure 4 and Figure 5, the performance analysis
of the IFFT using the clFFT client program on both CPU and
GPU reveals significant differences, highlighting the poten-
tial benefits of offloading certain tasks to more specialized
hardware. The tests conducted on an Intel(R) Core(TM) i7-
10510U CPU and an NVIDIA GEFORCE® MX110 GPU
demonstrate that the GPU consistently outperforms the CPU
in terms of execution time, regardless of the batch size. This is
particularly notable given that the CPU is typically responsible
for managing a multitude of background operations simultane-
ously, which can impact its ability to execute computationally
intensive tasks efficiently.

For this implementation, the number of points used are
128, 256, 512, 1024 and 2048. All power of two, taking into
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Fig. 4
IFFT GFLOPS VS LENGTH N FOR CPU AND GPU WITH BATCH SIZES 1

AND 10

Fig. 5
IFFT EXECUTION TIME VS LENGTH N FOR CPU AND GPU WITH BATCH

SIZES 1 AND 10

account applications of the radix-2 algorithm, or mixing radix-
2 with radix-4.

For batch size 1, the GPU shows remarkable performance
improvements over the CPU. For instance, with N = 128,
the GPU achieves an execution time of 9,461 ns compared
to the CPU’s 17,944 ns. As the value of N increases, the GPU
continues to maintain its lead, with the time taken for N = 2048
being 21,859 ns on the GPU versus 36,211 ns on the CPU.
The GFLOPS metrics further support these findings, where the
GPU consistently achieves higher GFLOPS across all tested
values of N. This indicates that the GPU is able to handle
more floating-point operations per second, a critical factor in
high-performance computing applications.

When increasing the batch size to 10, both CPU and

GPU exhibit increased execution times, but the GPU still
retains a clear advantage. For example, at N = 128, the GPU
execution time is 9,528 ns, while the CPU takes 25,655 ns.
Even at N = 2048, the GPU completes the task in 49,144
ns compared to the CPU’s 62,977 ns. Notably, the GFLOPS
for the GPU with batch size 10 reach up to 22.92 for N
= 2048, demonstrating the GPU’s superior capacity to scale
performance with increased workloads.

A key observation from the tests is the relationship between
GFLOPS and execution time. Despite the increase in execution
time with larger batch sizes, the GFLOPS achieved by both
CPU and GPU also increase, with the GPU showing a more
pronounced improvement. This suggests that while individual
operations may take slightly longer with larger batch sizes,
the overall throughput (number of operations completed per
second) improves significantly. This is particularly relevant for
applications requiring high computational throughput, such as
signal processing in 5G networks.

In the context of 5G functions, such as the IFFT in OFDM
(part of the Low-PHY functions), offloading the computation
to an OpenCL device like a powerful GPU or FPGA can
enhance overall system performance. By reducing the com-
putational load on the CPU, which is already handling other
critical functions, the system can achieve higher efficiency and
faster processing times. This approach aligns with the broader
trend of utilizing specialized hardware to handle specific tasks
in high-performance and real-time systems, ensuring optimal
resource utilization and improved performance metrics.

VI. CONCLUSION

This work proposed the implementation of a hardware-
based SmartNIC using the OpenCL framework to enhance the
performance of the disaggregated gNB Low-PHY functions
in the distributed units (DUs). The performance of the Low-
PHY implementation in the NVIDIA GeForce® MX110 GPU
was compared against the Intel(R) Core(TM) i7-10510U CPU
performance of the same function.

The results showed a significant performance advantage
for the GPU over the CPU in both execution time and
GFLOPS across various values of N and batch sizes, demon-
strating the GPU’s superior parallel processing capabilities.
Even with larger batch sizes, the GPU consistently handled
higher throughput of operations, making it a more suitable
choice for computationally intensive tasks in 5G networks.
The variability in CPU performance is likely due to the
additional functions being executed alongside Low-PHY tasks,
highlighting the complexity of network function offloading
and the importance of considering overall system architecture
when designing hardware accelerators.

Considering that FPGAs should be used in this type of
implementation, we can achieve better performance for the
Low-PHY functions, alongside lower energy consumption per
operation. As per the example cited [7], employing the FPGA-
based SmartNIC avoided the latency introduced by the transfer
of data between the host and the device, as well as between
off-chip and on-chip memory transfers.

Even though the proposed approach offers a promising
solution for enhancing signal processing performance in 5G
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networks by leveraging hardware-based accelerators and the
OpenCL framework, further research and optimization efforts
are warranted. Future work should focus on fully realizing
the potential of this approach and addressing challenges asso-
ciated with heterogeneous network architectures and varying
processing requirements.
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