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Sparse Dictionary Construction for Kernel
Adaptive Filtering with non-Gaussian functions
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Abstract— Kernel Adaptive Filtering (KAF) has gained
attention mainly due to its ability to deal with nonlinear
channel equalization and impulsive noise. In this context,
we focus on the Kernel Maximum Correntropy (KMC),
in which the Gaussian and Epanechnikov kernels were
used. However, the latter presents a numerical insta-
bility in which the algorithm diverges after a training
period. In this paper, we address this problem using data
dictionaries, which can be constructed through online
sparsification methods such as the Novelty Criterion (NC),
the Coherence Criterion (CC), and the Surprise Criterion
(SC). We simulated the KMC using both kernels and sparse
dictionaries in linear and nonlinear scenarios, comparing
their performance with the Kernel Least-Mean-Square
(KLMS). The algorithms presented desirable behavior and
did not present divergence.

Keywords— Kernel Adaptive Filtering, Epanechnikov
Kernel, Correntropy, Information Theoretic Learning,
Sparsification

I. INTRODUCTION

Kernel Adaptive Filtering (KAF) algorithms have be-
come popular recently due to their ability to deal with
nonlinear problems by mapping the input data to a high-
dimensional space, known as Reproducing kernel Hilbert
Space (RKHS), thereby allocating a kernel function for each
data. The objective of this approach is to express the system
output in terms of the transformed input data, which is
possible by using the “kernel trick”. Therefore the method
presents linearity, convexity and universal approximation
capabilities [1].

The topology of KAF algorithms is similar to a network
of Radial Basis Functions (RBF), where the parameter
of each node is adaptively computed during the training
period using a criterion. In this context, the Kernel Least-
Mean-Square (KLMS) is the result of the combination of
KAF algorithms with the traditional Least-Mean-Square
(LMS), therefore inheriting its simplicity and robustness
[2]. However, this criterion is based on the minimization of
the Mean Squared Error (MSE), which is not optimal when
dealing with non-Gaussian distributed errors. Alternatively,
Information Theoretic Learning (ITL) criteria may lead
to better solutions, such as the Maximum Correntropy
Criterion (MCC). This criterion inspired the creation of
the Kernel Maximum Correntropy (KMC) [3], which has
proven to be able to deal with impulsive noise scenarios.
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It is also necessary to be careful when choosing a kernel
function. Historically in the literature, the Gaussian kernel
is the default choice for the KAF filters in general, due
to its numerical stability [1]. However, the Epanechnikov
kernel is optimal for pdf estimation [4] and shown to be
superior to the Gaussian kernel in channel equalization
problems in certain scenarios [5]–[9].

In [9], the KMC algorithm was developed using both
Gaussian and Epanechnikov kernel [4]. However, the KMC
using the Epanechnikov kernel diverges after a certain
number of training samples, a problem that may happen
due to numerical instability, since the computational com-
plexity increases proportionally to the input dimensionality.
A possible solution to this problem is the use of sliding
windows to reduce the complexity of the algorithm and
avoid its divergence [10].

Even though divergence was avoided, another interesting
approach is to limit the size of the KMC through the
use of a dictionary, constructed online using sparsification
methods [1]. These methods usually initialize an empty
dictionary and add new income units to it according to a
chosen criterion. Among the criteria known in the literature,
we have the Novelty Criterion (NC) [11], the Coherence
Criterion (CC) [12], and the Surprise Criterion (SC) [13].
In this work, we propose using these three online sparsi-
fication criteria and comparing their performance when
implemented with the KLMS and the KMC algorithms
using Gaussian and Epanechnikov kernels.

This work was structured as follows: in Section II
there is an overview of the KMC using the Gaussian and
Epanechnikov kernels. Section III discusses online sparsi-
fication techniques. In Section IV we have the algorithms
performance in the channel equalization problem. Finally,
the conclusions of this work are presented in Section V.

II. FOUNDATIONS

In this section, we present Kernel Adaptive Filtering and
its contextualization in the channel equalization problem.
Furthermore, we discuss the Kernel Maximum Correntropy
and its two versions using Gaussian and Epanechnikov
kernels.

A. Kernel Adaptive Filtering

The objective of Kernel Adaptive Filtering (KAF) is to
learn a continuous input-output mapping f :U→R based
on a sequence of paired samples {s1, x1}, {s2, x2}, . . . , {si, xi},
where U ⊆ R is the input domain, si is the initially
transmitted signal, and xi is the received signal distorted by
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a transmission channel [10], [13]. It uses kernel functions
to map xi to ϕ(xi) in a high-dimensional space F, known as
the Reproducing kernel Hilbert space (RKHS), where linear
operations are applied [1]. The KAF filters are usually
formulated so that their output is a function of the inner
product of two transformed data, getting the advantage
of the “kernel trick”. The output can then be expressed
through the “Representer Theorem” as [14]:

f =
N∑

i=1
aiκ(xi, ·), (1)

where ai are the weight coefficients and κ(·) is a Mercer
kernel, i.e. symmetric, continuous, and positive semi-
definite [1]. It is possible to notice that the topology of
the KAF algorithm (1) is similar to a growing Radial Basis
Function (RBF) network that expands linearly with the
size of the training sequence. The coefficients connecting
each node to the output are adaptively adjusted within
the RKHS during the training period through the gradient
descent method. Thus, we can find the equalizer weights,
denoted by Ω, using the following equation:

Ωn =Ωn−1 +µ∇Jn, (2)

where µ is the learning rate and Jn is an objective function.

B. Kernel Maximum Correntropy (KMC)

Correntropy is a measure of ITL which can be defined
as a “generalized” correlation for pairs of random variables
[15]. This measure contains second and higher-order pdf
moments, which are expressed implicitly by the kernel
used for its estimation [16].

Considering two arbitrary random variables X and Y ,
the cross-correntropy between them can be defined by the
following equation:

VXY (m)= EXY [κ (X ,Y )] , (3)

where E[·] denotes the expected value.
Since it measures the generalized similarity between

these variables, the cross-correntropy reaches its maximum
when X = Y , which inspired the Maximum Correntropy
Criterion (MCC). In the context of adaptive signal equal-
ization, we can replace the random variables in (3) by
the transmitted signal si and the equalized signal yi =
Ωnϕn(x), so the MCC objective function can be defined by
the equation:

JMCC = 1
N

n∑
i=1

κσ (si, yi) . (4)

The MCC can be used by a KAF filter (2), to adjust the
coefficients weights. This algorithm is called KMC and was
first proposed by [3].

1) KMC with the Gaussian kernel: The Gaussian kernel
is the primary choice among most of the works found in
the literature, due to its stability and properties, which
facilitate some operations, such as convolutions [8]. The
Gaussian kernel function corresponds to a normal distri-
bution and can be defined by the following equation [4]:

κG(si, yi)= 1p
2πσ

e−
(si−yi )2

2σ2 , (5)

where σ is the kernel size or bandwidth. The KMC
was originally proposed using the Gaussian kernel [3],
thus following (2) and (4), the equalizer weights can be
determined using the stochastic gradient approximation
of (4):

Ωn+1 =Ωn +µ
∂κG(sn,ΩT

nϕn)
∂Ωn

=µ
n∑

i=1
exp

(−e2
i

2σ2

)
e iϕi, (6)

where ϕn = ϕ(xn), en = sn − yn = sn −ΩT
nϕn and κG is

the Gaussian kernel. The output of the equalizer can be
obtained using the “kernel trick" [1]–[3]:

yn+1 =µ
n∑

i=1
exp

(−e2
i

2σ2

)
e iκG(xi, xn+1). (7)

In this work, the KMC algorithm using the Gaussian
kernel will be referred to as KMC-GAU.

2) KMC with the Epanechnikov kernel: The Epanech-
nikov kernel [17] is frequently used in statistical and ma-
chine learning methods. This kernel function is considered
optimal for pdf estimation and is defined as a second-order
polynomial function, adjusted to correspond to a density
function [4]. The Epanechnikov kernel function is described
by the equation below:

κE(si, yi)=
{

3
4σ

(
1− ( si−yi

σ

)2
)
, −σ< si − yi <σ

0, otherwise.
(8)

The KMC can be developed using the Epanechnikov
kernel (8) through the gradient descent approach (2):

Ωn+1 =Ωn +µ
∂κE(sn,ΩT

nϕn)
∂Ωn

=µ 3
2σ3

n∑
i=1

e iϕi, (9)

where κE is the Epanechnikov kernel. Using the “kernel
trick” again, the output of the system can be computed
similarly to (7):

yn+1 =µ 3
2σ3

n∑
i=1

e iκE(xi, xn+1), −σ< xi − xn+1 <σ. (10)

This algorithm will be called KMC-EPA since it uses the
Epanechnikov kernel.
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III. SPARSIFICATION

KAF filters use a learning system that dynamically
allocates new computational units, D i = {x j}i

j=1, which are
stored in memory during the training. It usually converges
after a reasonable period in a stationary environment.
However, in KAF filters, the computational units increase
linearly with the number of training data, which becomes a
problem when dealing with nonstationary environments [1],
[11]. According to Occam’s Razor principle, it is possible to
construct a better solution with the smallest possible set
of elements [1]. Therefore, a network with as few kernels
as possible would be desirable since it will reduce the
complexity in terms of computation and memory. Besides
that, it often results in a better generalization of the model
[18]. There are many methods of sparsification of kernel-
based solutions, some offline and others online. Online
sparsification usually starts from an empty dictionary that
grows dynamically according to the chosen criterion.

A. Novelty Criterion (NC)

The Novelty Criterion (NC) was proposed in [11]. This
method verifies each new input data and decides if it will
become a new center in the dictionary by evaluating a
two-part novelty condition. First, the NC evaluates if the
minimum Euclidean distance of the new input data from
other centers in the dictionary is greater than a preset
threshold, δNC :

min
d j∈D i

(∥xi −d j∥)≥ δNC . (11)

After this, the NC checks if the prediction error, i.e. the
difference between the desired signal and the equalized
signal, is greater than another preset threshold, δE−NC :

|e i| ≥ δE−NC . (12)

If these two conditions are met, then the new input
data will be added as a new center in the dictionary
[1]. Furthermore, the δE−NC can be seen as the desired
accuracy of the output and it is related to the desired
steady-state error [11], [18]. After adding a few samples
to the dictionary, the system may find an equalizer that
leads to the desired accuracy, thereby stopping allocating
new units [11].

B. Coherence Criterion (CC)

Another way to characterize a dictionary in approxima-
tion problems is using coherence as a parameter [19]. In
the kernel-based context, it was first proposed in [12] as a
new sparsification rule known as Coherence Criterion (CC):

max
di∈D

|κ(xn,di)| ≤ δCC . (13)

If the coherence measure is below a given threshold
δCC ∈ [0,1), then the input unit will be added to the
dictionary as a new center. This parameter determines both
the level of sparsity and the coherence of the dictionary [12].

Although it is not present in the original formulation, we
also considered the condition (12), since it improved the
performance during simulations. This threshold will be
referred to as δE−CC .

C. Surprise Criterion (SC)

Surprise is a subjective information measure that quan-
tifies how much information a new data contains relative
to the knowledge of the learning system. This measure is
based on the Negative Log Likelihood (NLL) and can be
calculated by the following equation [13]:

Si = 1
2

ln(r i)+
e2

i
2r i

− ln(ρ(xi|Ti)), (14)

where ρ(xi|Ti) is the input distribution hypothesized by
the learning system Ti and r i is defined as

r i =λ+κ(xi, xi)− max
∀d j∈D i

κ2(xi,d j)
κ(d j,d j)

, (15)

where λ is the regularization parameter. In general,
ρ(xi|Ti) can be assumed as a constant if no information is
available a priori [13].

A redundant data results in little surprise whereas an
outlier data returns a high surprise value. The Surprise
Criterion (SC) uses this logic to construct a dictionary based
on the calculated Si. At each iteration, the SC classifies new
data into three categories: abnormal if Si > T1; learnable
if T1 ≥ Si ≥ T2; and redundant if Si < T2. Both T1 and T2
are problem-dependent parameters, but T1 usually is a
large value to disable abnormal detection [13].

IV. RESULTS

In this section, we will analyze the performance of
the KMC-GAU and KMC-EPA using online sparsification
methods in linear and nonlinear scenarios, which are based
on [10]. For comparison, we include the KLMS using the
Gaussian kernel in the analysis, a simple and robust KAF
filter presented in the literature [1]. Each input data and
center of the dictionary is composed of a vector of size M = 5.
The evaluation metric used will be the Mean Square Error
(MSE), in addition, we will also analyze the final size of
each dictionary obtained. The parameters were chosen in
order to lead to the best MSE performance. When using
NC and CC, µ varied linearly within a given interval.

A. Linear Scenario

In this simulated scenario, we transmitted a Binary
Phase-Shift Keying (BPSK) signal that first passes through
a pre-coder f (z) = 1+ 0.5z−1, adding correlation to the
signal. This filter output will be the transmitted signal,
sn. It then passes through a linear channel h(z) = 0.2+
1z−1 + 0.4z−2 followed by an additive impulsive noise
[3], whose probability density function is described by
pnoise = 0.9N (0,σ1)+0.1N (0,σ2), where N is a Normal
distribution, with σ2 = 0.8 and σ1 adjusted to obtain a
resulting SNR of 20 dB [9]. It is worth mentioning that, as
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Fig. 1. Convergence curve in a linear channel with impulsive noise using a correlated signal

in [9] and [10], the error e i was calculated with a 1-sample
delay in sn to improve the performance. The parameters
used in the algorithms during this simulation can be found
in Table I.

TABLE I

PARAMETERS USED IN THE LINEAR CHANNEL SCENARIO

NC
δNC = 1.8

δE−NC = 0.35

CC
δCC = 0.35
δE−CC = 0.2

SC
T1 = 50
T2 = 0.5
λ= 0.001

µ σ µ σ µ σ

KLMS-GAU 2 ∼ 3 1.2 1 ∼ 2 1.1 2 0.8
KMC-GAU 2 ∼ 3 1.2 3 ∼ 4 1.2 3 0.8
KMC-EPA 0.5 ∼ 1 1.7 1 ∼ 5 1.5 2 1.3

Figure 1 results from an average of 1000 simulations.
We can notice that all the algorithms converged to similar
MSE values and that the dictionary criteria have the main
influence on the performance. The algorithms using CC
and SC achieved the best results regarding the MSE level.
There is approximately no performance difference between
the use of the two kernels.

In Figure 2 we can see box plots describing the distribu-
tion of the dictionary size for the same 1000 simulations
of Figure 1. The algorithms using NC and SC resulted
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Fig. 2. Dictionary size box plots in a linear channel with impulsive noise
using a correlated signal

in dictionaries with sizes between 100 and 200 centers,
whereas algorithms using CC resulted in varied sizes of
dictionaries. The CC-KMC-GAU, for example, generated
the largest dictionaries with sizes around 400 centers. On
the other hand, the shortest dictionary was obtained by
the CC-KMC-EPA.

B. Nonlinear Scenario

In this scenario, we transmitted a BPSK signal through
the nonlinear channel defined by zn = sn + 0.2sn−1 and
xn = zn −0.9z2

n +νσ, where νσ is an AWGN noise [2]. We
considered an SNR of 20 dB and there is no delay of sn
on the obtention of the error. In Table II, we can find the
parameters set in this simulation, which were chosen in
order to achieve the best MSE performance.

TABLE II

PARAMETERS USED IN THE NONLINEAR CHANNEL SCENARIO

NC
δNC = 1.8

δE−NC = 0.2

CC
δCC = 0.5

δE−CC = 0.4

SC
T1 = 50

T2 = 0.38
λ= 0.001

µ σ µ σ µ σ

KLMS-GAU 1 ∼ 2 1 3 1 2 0.8
KMC-GAU 1 ∼ 3 1 3 ∼ 4 1 2 0.8
KMC-EPA 0.01 ∼ 0.1 1.5 2 ∼ 3 1.4 2 1.5

In Figure 3 we have the results of an average of
1000 simulations. In this scenario, we can notice that
the algorithms using the Gaussian kernel achieved a
better performance in terms of MSE level. In terms of
the dictionary criteria, SC had the best performance. NC
converged to the same MSE but had a slower convergence.

Figure 4 displays the box plots of the dictionary size
distribution of the same 1000 simulations of Figure 4.
We can see that the algorithms using CC resulted in
the smallest dictionaries, between 50 and 100 centers. In
contrast, the dictionaries generated by the algorithms using
NC and SC are larger, with around 150 centers stored.
In this case, the NC-KMC-EPA generated the largest
dictionaries, around 300 centers. It is interesting to note
that neither the method with the largest dictionaries nor
the method with the smallest ones led to the best MSE
performance, which was achieved by the SC criterion.
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Fig. 3. Convergence curve in a nonlinear channel with additive noise using a BPSK signal
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Fig. 4. Dictionary size box plots in a nonlinear channel with additive
noise using a BPSK signal

V. CONCLUSION

The Kernel Maximum Correntropy has shown to be an
efficient tool for dealing with nonlinear channel equal-
ization and impulsive noise scenarios. However, it pre-
sented a numerical instability when implemented with
the Epanechnikov kernel in previous work [9]. In this
work, we propose the use of data dictionaries to address
this issue and reduce the computational complexity of
the algorithm. In this sense, we implemented the KMC-
EPA alongside online sparsification methods and simulated
it in linear and nonlinear scenarios, comparing it with
the KMC-GAU and the KLMS. The algorithms presented
stability and a desirable performance in terms of MSE
level. Furthermore, simulation results showed that the
sparsification methods can reduce the complexity of the
algorithms without affecting performance. In both linear
and nonlinear simulation scenarios, the SC criterion is
among the best in terms of MSE performance, with a
reasonable dictionary size.
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