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Abstract—Cognitive Radio is an innovative technology that
allows unlicensed (secondary users) users to opportunistically
access channels licensed to other users (primary users). A key
procedure in the context of opportunistic access is the spectrum
sensing, performed by secondary user to determine whether the
channel is idle or busy. However, decisions regarding the channel
state can be corrupted by fading conditions, leading to wrong
decisions regarding the channel state. Collaborative spectrum
sensing schemes have been proposed in the literature as a possible
way to mitigate the effects of fading. In these schemes, local
decisions or observations about the channel state are combined
to reach a global decision. Even though collaborative spectrum
sensing in general leads to a higher performance, correlated
shadowing may reduce the benefits of collaboration. In this
paper we investigate the performance of different combining
rules in collaborative spectrum sensing in correlated shadowing
environment. Our results show that the incremental performance
gain achieved by adding more users in the collaboration scheme
tends to reduce when the number of users in the collaboration
grows, indication that there is a limit in the performance of
collaborative spectrum sensing.

Index Terms—Spectrum sensing, cognitive radio, correlated
shadowing fading.

I. INTRODUCTION

RECENT measurements of spectrum utilization shows that
most of the spectrum is unused for some period of time,

representing a low efficiency in the spectrum usage. A possible
solution to this problem is based on the opportunistic use of
spectrum, when unlicensed users (also known as secondary
users), can transmit over a given channel as long as that band
is unused by the users that hold the license to use that band
(known as primary users). Clearly, secondary users cannot
disturb primary users [1].

Cognitive radio is an innovative technology that can be used
in the implementation of opportunistic channel access, when
secondary users has the ability to learn about the transmission
environment surrounding them (i.e., unused spectrum bands,
primary users behavior, etc,) and change their transmission
characteristics in order to access a vacant spectrum band [2].

A key procedure in opportunistic channel access is related
to the decision on whether the intended channel is vacant or
not. This procedure, known as spectrum sensing, is based
on the observation of some feature of the intended spectrum
band, and must be performed as accurately as possible. First
of all, the secondary user must be able to detect the presence
of a primary user in the intended channel, in order to avoid
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interference to primary users. On the other hand, a transmis-
sion opportunity due to a vacant channel must not be missed,
so that to increase secondary users capacity.

There are number of challenges associated with spectrum
sensing. For instance, propagation channel conditions may
degrade the performance of spectrum sensing, due to high
noise level (i.e., low signal-to-ratio - SNR) and fading dis-
turbance. Particularly harmful is the shadowing fading, since
this kind of fading is typically non-ergodic and its effect
cannot be removed by averaging samples of the received
signal. A possible way to mitigate the effects of shadowing
fading in the performance of spectrum sensing is by exploiting
the spatial diversity among the observations made about the
channel status by different secondary users. In light of the
benefits achieved from diversity, cooperative spectrum sensing
techniques have been proposed in the literature [3]. Several
combining strategies have been proposed, but all of them are
based on the same idea: in a network of secondary users, local
decisions or observations about the channel, made by each
secondary user, are combined at a fusion center according to
a pre-defined rule, in order to achieve a global decision. This
decision is then made available to all secondary users in the
network.

Even though cooperative spectrum sensing is shown to be a
very efficient way to overcome the problem due to fading, the
gain achieve by cooperative spectrum sensing may be reduced
when shadowing fading is spatially correlated. In fact, this is a
well known result in the diversity techniques field [4]: diversity
gain is reduced when the combined signals are correlated.

In this paper we investigate the performance of coopera-
tive spectrum sensing techniques under correlated shadowing
fading. We consider three different hard-decision combining
techniques, under different levels of spatial correlation. Our
results show that the performance improvement tends to reach
a limit as the number of collaborating secondary users in-
creases, reducing benefits of collaboration.

This paper is organized as follows. Section II reviews the
key aspects of spectrum sensing based on energy detection.
In Section III, we discuss cooperative strategies for spectrum
sensing, with emphasis in hard decision rules. Section IV
describes the simulation model used in the numerical analysis,
with special attention given to the procedure for correlated
shadowing generation. Finally, Section VI concludes the paper
with the main findings.

II. SPECTRUM SENSING

With the increasing interest in opportunistic channel access,
several techniques for spectrum sensing have been proposed in
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Fig. 1. Energy detection spectrum sensing.

the literature. All these techniques can be classified into three
groups [5]: (i) energy detection, (ii) matched filter and (iii)
feature detection. The energy detection technique is a good
choice when the signal to be detected is unknown, or when
low complexity is a key requirement. Spectrum sensing based
on matched filter requires knowledge on the transmitted filter,
what can be prohibited requirement in some scenarios. Finally,
the detection feature technique has an improved performance,
but at the expenses of a higher complexity. In this work we
consider the energy detection technique, which, due to its
simplicity, has receive a great deal of attention in the last years.

A. Energy Detection Spectrum Sensing

The key idea behind the energy detection spectrum sensing
is the measurement of the energy in the channel under ob-
servation, and based on the measured energy, decide whether
the channel is idle (low energy) or busy (high energy). Figure
1 shows the basic block diagram of such spectrum sensing
technique. After filtering out the signal outside the band of
interest, the energy E of the signal observed in the channel
is computed, by squaring and integrating the signal over an
interval T . The resulting energy E is then compared to a pre-
defined threshold γ0 to decide whether the channel is idle or
busy.

In order to present a more formal description of the
performance of the energy detector, we will define some
variables of interest. Following [6], we consider a channel
model that includes the deterministic path loss and shadowing
fading. Therefore, the propagation channel gain (in terms
of amplitude) between the primary transmitter and the l-th
secondary user is given by

hl = (dl/d0)
−η/210ζl/20, (1)

where d0 is a close-in reference distance, dl is distance
between the l-th secondary user and the primary user, η is
the path-loss exponent and ζl is a normal distributed random
variable modeling the shadowing fading.

As the spectrum sensing procedure can be viewed as a
decision problem, we will define two hypotheses:

H0 : channel is idle,
H1 : channel is busy. (2)

Therefore, the n-th sample of the signal observed by the l-th
secondary user in the channel of interest is given by

rl[n] =

{
ν[n] if H0 is true
hl[n] x[n] + ν[n] if H1 is true,

(3)

where x[n] are samples of the signal transmitted by the
primary user and ν[n] are samples of the additive gaussian
noise.

The energy of the signal observed by the l-th secondary
user in the channel is computed as

El =
1

L

L∑
n=1

|rl[n]|2, (4)

where L is the number of samples considered. Finally, the
decision process is performed, by comparing the energy El to
a pre-defined threshold γ0:

If El < γ0 : decide that the channel is idle
If El ≥ γ0 : decide that the channel is busy. (5)

The performance of the spectrum sensing procedure is
measured in terms of the missed detection probability Pmd

and the false alarm probability Pfa. The probability Pmd is
defined as the probability of deciding in favor of channel idle
when the channel is in use by the primary user, i.e.,

Pmd = Pr{El < γ0|H1}. (6)

On the other hand, Pfa is defined as the probability of deciding
in favour of channel occupied when the channel is idle, i.e.,

Pfa = Pr{El > γ0|H0}. (7)

Note that Pfa and Pmd are the probabilities of wrong
decisions in the hypotheses H0 and H1, respectively, and
therefore we would like to have both of them as low as
possible. However, if all the other parameters are kept fixed,
it is not possible to reduce both probabilities at the same time.
In fact, in order to have a small missed detection probability,
we could use a small threshold value γ0. However, by doing
so, we also increase the false alarm probability.

It should be pointed out that the false alarm probability
can be reduced by using a larger integration period T in the
energy calculation (which corresponds to a larger number of
samples L in (4)). If the integration period is large enough, we
could also reduce the threshold value, what would additionally
reduce Pmd, as desired, improving the overall performance.

III. COLLABORATIVE SPECTRUM SENSING

The performance of spectrum sensing can be greatly de-
graded by fading conditions, as the energy measure can be
affected by a strong attenuation. Recent works have shown
that cooperative spectrum sensing can be used to mitigate
the effects of fading [3], [7]. The key concept of cooperative
spectrum sensing is to combine local decisions or observations
made by each secondary user, using some pre-define rule, in
order to reach a global decision. As it is unlikely that most of
the secondary users will suffer from a severe fading condition
at the same time, we can expect a performance improvement
when cooperative spectrum sensing is used.

Two forms of combinations have been investigated in the
literature: soft decision and hard decision. In the soft decision
strategy [8], each secondary reports its observation about the
channel (e.g., the energy of the signal in the channel under
consideration). The fusion center then combines somehow
these values of energy in order to compute a final metric, used
to reach a global decision. In the hard decision strategy [9],
the secondary users report their local decisions (either channel
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busy or channel idle). Then, the fusion center combines these
local decisions using some hard decision rule, to reach the
global decision. Usually, soft decision strategies lead to higher
performance, when compared to hard decision strategies, as in
the former the final metric used to reach the global decision
conveys more information about the channel state [10]. In this
paper, we concentrate our study on hard decision strategies,
investigating three combining rules, as discussed in the fol-
lowing paragraphs.

Three hard-combining decision rule have been extensively
investigated in the literature, namely the AND, OR and Ma-
jority rules. All these rules are based on local decisions, which
can be represented by bit 0 (channel idle) or 1 (channel busy).
According to the AND rule, the global decision will be in
favor of busy channel only if all local decisions are in favor of
busy channel. Now, if the OR rule is used, the global decision
will be in favor of busy channel if at least one local decision is
in favor of busy channel. Finally, in the Majority rule, busy
channel will be the global decision if the majority of local
decisions are in favor of busy channel. All these three rules
can be represented by the K-out-of-N decision rule, where N
is the number of secondary users in the cooperative technique:
K = N corresponds to the AND rule; if K = 1, we have the
OR rule; if K = N/2 + 1, we have the Majority rule.

If the local decisions are independent to each other, and all
secondary users have the same local false alarm probability
Pfa and detection probability Pd = 1 − Pmd, then the
collaborative probabilities of detection and false alarm are
given by [11]:

Qd =
N∑

n=K

(
N

n

)
Pn
d (1− Pd)

N−n (8)

Qfa =

N∑
n=K

(
N

n

)
Pn
fa (1− Pfa)

N−n, (9)

where K is selected according to the desired combining rule.
Clearly, Qmd = 1−Qd.

In this work, we are interested in the performance of
energy detection spectrum sensing under spatially correlated
shadowing fading. The spatial correlation in the shadowing
fading makes the expressions (8) and (9) not so useful, as the
local decisions are no longer independent to each other. In
fact, the correlation in the shadowing fading tends to degrade
the overall performance of collaborative spectrum sensing, due
to the reduction of diversity gain caused by correlation [12].

In the next sections we describe results of simulation exper-
iments to show the effects of correlation on the performance
of collaborative spectrum sensing. We will consider a 2-
dimension network of secondary users, with different degree
of correlation of shadowing fading, and different hard-decision
rules.

IV. SIMULATION MODEL

A. Network model

We consider a secondary network of N users, that collab-
oratively sense the spectrum licensed to a primary user. The
secondary network region is a square of area 1 km2, with N
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Fig. 2. Network model used in the simulation.
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Fig. 3. Model for computing samples of spatially correlated shadowing
fading.

secondary users randomly placed. Only one primary user is
simulated, which is located 5 km2 away from the center of
secondary network, as shown in Figure 2. Therefore, we can
assume that the deterministic path losses from the primary user
and each of the secondary users are approximately the same.
This arrangement helps to emphasize the effects of correlated
shadowing in the results. The channel model is that described
in expression (1), with d0 = 1 m, η = 3.5 and the standard
deviation of the shadowing fading is set to σdB = 4 dB.
The additive noise power and the primary transmit power are
adjusted based on the desired SNR at the secondary terminals.

B. Spatially correlated shadowing fading

A key component in the simulation model used in the
experiments is the generation of samples of spatially corre-
lated shadowing fading. In this work we used the technique
introduced in [13], which is briefly described in the next
paragraphs.

The coverage area is divided according to a square grid,
defining grid points with separation distance denoted correla-
tion distance dcorr, as shown in Figure 3. The grid points are
associated with samples of uncorrelated shadowing fading with
standard deviation σdB . The shadowing fading at a generic
point P (i.e., not a grid point) is correlated with the shadowing
fading values of the grid points of the square where the point
P is located (points A, B, C and D in Figure 3). Clearly, the
shadowing value at point P , denoted by SP , depends on the
shadowing fading at those four points surrounding P , denoted
as SA, SB , SC and SD, and on the distances X and Y from
one these four points (selected as the reference point). Using
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Fig. 4. Example of spatial samples of correlated shadowing fading.

the bi-linear regression, SP is given by

SP = G−1 {[SA X + SB (1−X)] Y +

+ [SC X + SD (1−X)] (1− Y )}, (10)

where X and Y are the distances of point P from point A
(reference point, see Figure 3), normalized with respect to the
correlation distance dcorr, and G is given by

G =
√
(1− 2X + 2X2) + (1− 2Y + 2Y 2). (11)

The factor G in (10) guarantees that the shadowing variance
at point P is equal to σdB . It should be noted that the distance
dcorr controls the level of spatial correlation in the network
area: larger dcorr means higher level of spatial correlation.

Figure 4 shows an example of the shadowing fading over
the network area, generated by the above procedure, where it
is evident the spatial correlation.

V. PERFORMANCE ANALYSIS

In this section we present a performance analysis of collab-
orative spectrum sensing under correlated shadowing fading.
Combining strategies based on the AND, OR and Majority
rules are tested, under different levels of spatial shadowing
correlation.

We begin by analyzing the benefits of collaboration in
spectrum sensing. Figure 5 shows the curves Qfa vs. Qmd

(also known as Receiver Operating Characteristic - ROC) of
collaborative spectrum sensing under OR rule, for different
number N of secondary users participating in the collaborative
scheme. We can see the clear improvement achieved by
combining local decisions (the ROC curves move toward the
lower left portion of the plot as N increases).

Figure 5 also shows that the incremental gain achieved
by adding more secondary users in the collaboration scheme
decreases as the total number of collaborating users increases.
This behaviour can be better observed in Figure 6, where we
show the probability of missed detection Qmd, as a function
of the number of secondary users N in the collaborative
scheme, for the OR rule, for different levels of correlation (i.e.,
different correlation distances dcorr). This reduction in the
incremental gain as N increases is a well known result in the
diversity theory field. The amount of new information brought
by a secondary user just added to the collaboration scheme
depends on the amount of information already provided by
the secondary users in the scheme. Therefore, there is a lower
bound on the probability of missed detection Qmd (as well
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Fig. 5. Probability of missed detection Qmd vs. probability of false alarm
Qfa, for OR rule, SNR = −14 dB, L = 100 samples, dcorr = 500 m,
σdB = 4 dB, and different number of secondary users N in the collaborative
scheme.
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Fig. 6. Probability of missed detection Qmd vs. number of secondary users
in the collaborative spectrum sensing N , for OR rule, SNR = −14 dB,
K = 100 samples, σdB = 4 dB, dcorr = 50, 100 and 500 m.

as on the false alarm probability). In fact, the authors in [12]
shows the existence of this lower bound in a network with
one-dimensional distribution of secondary users.

Figure 6 also shows the effects of the severity of spa-
tial correlation on the performance of collaborative spectrum
sensing. As the correlation distance increases (i.e., higher
correlation), the performance degrades. From this figure, one
can infer that the mentioned above lower bound on Qmd

increases with the correlation severity1. In fact, in a strongly
correlated shadowing environment there is a small room for
an improvement by using diversity, since local decisions tend
to follow the same trend, representing a small the diversity
gain.

1In order to observe these lower bounds on Qmd in Figure 6 a much
larger number N of secondary users should be simulated, what proved to be
prohibited due to the simulation time required.
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Fig. 7. Probability of missed detection Qmd vs. number of secondary users
in the collaborative spectrum sensing N , for OR rule, SNR = −14 dB,
σdB = 4 dB, dcorr = 100 m, for different number of samples L in the
integration.

In Figure 7 we show the effect of the number of samples L
in the energy computation. In this figure, the missed detection
probability Qmd is plotted versus the number N of secondary
users participating in the collaborative spectrum sensing, for
different L. It is evident in this figure the performance
improvement as the number of samples increases, which is,
in fact, an expected result. The use of more samples of
the received (i.e., larger integration period) in the energy
computation helps to reduce the effects of additive noise.
In this figure, it is more evident the existence of the above
mentioned lower bound on the missed detection probability,
particularly for small number of samples.

In Figure 8 we compare all three combining rules discussed
in Section III, in both correlated and uncorrelated environ-
ments. This figure shows the missed detection probability
Qmd versus the number of secondary users N , for combining
rules AND, OR and Majority. First of all, we can see that,
regardless of the presence of correlation in the shadowing
process, the majority rule provides the best performance, in
terms of detection probability, followed by the OR and AND
rules, in this order. This figure also evidences the degradation
due to correlation, as already discussed.

VI. CONCLUSION

In this paper we investigated collaborative spectrum sensing
in spatially correlated shadowing fading environment. Hard
decision combining rules AND, OR and Majority were in-
vestigated by means of simulation. Our results show the
existence of a bound in the performance improvement achieved
by collaboration, when shadowing is correlated. In fact, the
incremental gain achieved when more users are added to
the collaboration scheme reduces as the number of users
collaborating increases, indicating that no new information
about channel state is been added. Moreover, our results show
that the Majority rule is more robust than the other two
combining rules, even in spatially correlated environment.
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