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Abstract— The application of failure detection techniques in
transparent optical networks is crucial to ensure the reliability
of these networks and prevent data losses. Hence, this work
compares the failure management performances of two unsuper-
vised learning algorithms based on Principal Component Analysis
(PCA): the linear PCA and the non-linear PCA (NLPCA) built
from auto-associative neural networks. These techniques may be
trained with only data from normal conditions, handling the
imbalanced nature of the dataset. Experimental results acquired
with a testbed-derived dataset show that the two PCA-based
techniques detect and locate failures with over 90% accuracy.
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I. INTRODUCTION

Leveraging the accelerated spread of large bandwidth net-
works that came with the development of 5G, the possibility of
having applications operating with high data transmission rates
has arisen, as well as the improvement of technologies such as
the Internet of Things, cloud computing, and autonomous vehi-
cles. Since transparent optical networks (TONs) are promising
technologies capable of dealing with this massive data flow, it
is important to guarantee their quality of transmission (QoT).
In that scenario, promoting accurate and real-time failure
management is paramount to ensure the reliability of TONs.

Typically, the most traditional methods for failure man-
agement in optical networks are based on predefined thresh-
olds or probability statistics models [1]. However, current
TONs are becoming more flexible, self-adaptive, and dynamic.
Therefore, threshold-based methods might be inefficient in
properly identifying a failure, which leads to more cost and
a higher probability of errors [2]. In that case, alternatives
that contribute to the autonomy of networks and with adaptive
thresholding become crucial.

To address this situation, the application of machine learning
(ML) techniques for failure management has been explored, as
they can learn patterns that differentiate between normal and
faulty conditions regarding network components [3]. However,
supervised learning (SL) models are the most often applied
strategy for failure detection [4], which requires a balanced
dataset (i.e. when the number of samples from both normal
and faulty conditions is similar). However, in real scenarios,
there are much fewer anomalous data (if any) than normal
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data, leading to poor training of SL models, filled with false
alarms, and shortcomings in fault recognition.

Recent studies have proposed the usage of unsupervised
learning (UL) techniques [5] [6]. Unlike SL models, these
techniques only need data from normal conditions (i.e. without
failures) to be properly trained. Therefore, acquiring data from
equipment undergoing failures or the simulation of failure
conditions from statistical models is unnecessary. More specif-
ically, UL models can learn hidden patterns from normal data,
recognizing underlying information. Thus, when anomalies
(failures), i.e., data that have different behavior from normal
conditions, are fed to the model, it can recognize them.

In that regard, in this work, we compare two UL techniques
based on the Principal Components Analysis (PCA) algorithm
for failure management in optical networks: the linear PCA
and the non-linear PCA (NLPCA).

The rest of the paper is structured as follows. Section
II is devoted to presenting the theoretical fundamentals of
two PCA-based models. In Section III, we present the main
operating principles of the PCA and NLPCA and how they can
be implemented to perform failure detection and localization
in the context of optical communication networks. Section IV
describes the optical setup used for data acquisition and the
optical dataset used in our experiments. Section V exhibits
performance results and discusses some comparisons. Finally,
in Section VI, we present our conclusions.

II. APPROACHES BASED ON PRINCIPAL COMPONENT
ANALYSIS

A. Linear PCA

PCA is a widely used technique in ML and statistics for
dimensionality reduction and data visualization [7]. PCA can
reduce the data dimensionality by transforming it into a new
coordinate system, where the variables are uncorrelated, or-
thogonal, and ordered by the amount of variance they capture.
This transformation is achieved by finding the eigenvectors
and eigenvalues of the covariance matrix.

In general, given a dataset X with n observations and p
variables, the first step in PCA is to center the data. This
is done by subtracting the mean of each variable from the
respective variable values. This process ensures that the new
coordinate system is aligned with the directions of maximum
variance in the data rather than being centered on the means
of the variables. Consequently, the arrangement of data points
in this new coordinate system more accurately represents the
underlying variance structure of the data. The centered data
matrix is denoted as X ′. Next, PCA computes the covariance
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Fig. 1: Overview of the PCA-based failure management.

matrix of the centered data X ′. Each element of this matrix
is calculated as the covariance between pairs of variables,
and the matrix is then rearranged into a square symmetric
matrix. Besides, the eigenvectors decomposition is computed.
The eigenvectors v of a covariance matrix A in PCA are found
by solving the characteristic equation:

Av = λv, (1)

Where involves the following variables: A, which represents
the covariance matrix; v, the eigenvector of the matrix A; and
λ, the eigenvalue corresponding to v. To find the eigenvectors,
one must compute the eigenvalues λ by solving the determi-
nant equation:

det(A− λI) = 0. (2)

Where I is the identity matrix. After finding the eigenvalues,
the corresponding eigenvectors are estimated by substitution
into the characteristic equation. PCA then calculates eigenvec-
tors v1, v2, ... vp and eigenvalues λ1, λ2, ..., λp of A. These
eigenvectors form the new basis vectors of the transformed
coordinate system.

Finally, PCA selects a subset of the eigenvectors, called
principal components (PC), based on the amount of variance
they capture. The k PCs corresponding to the k largest eigen-
values represent the most important directions of variation in
the data. In other words, the covariance matrix represents
the relationships between the variables in the dataset. The
eigenvectors and eigenvalues provide important information
about the directions of maximum variance and the amount of
variance captured by each direction, respectively.

B. Non-linear PCA

NLPCA has the same objective as the traditional PCA.
It groups correlated values from the dataset in a smaller
dimension until obtaining k principal components [8]. Beyond

this, it can be referred to as an extension of the traditional
PCA method that allows for nonlinear mappings of features.
Correspondingly, NLPCA aims to find a low-dimensional
representation of high-dimensional data while preserving the
inherent nonlinear data structure.

One common approach to NLPCA is using auto-associative
neural networks (AANNs). These AANNs are feed-forward
neural networks that, in addition to the input/output layers,
comprise two mapping/de-mapping layers and one extra bot-
tleneck layer to span the compressed data representation [9].
As shown in Fig.1, the bottleneck layer describes a code used
to represent the input by performing a mapping h : Rp → Rk

of the input x. Afterward, the data are reversed to the original
space by a de-mapping operation g : Rk → Rp. The learning
process aims to find the set of parameters Θ = {W,W′} that
minimizes the loss function.

L(Θ) =
1

n

∑
∀x∈X

∥x− gW′(hW(x))∥2 , (3)

where L(·) is a loss function penalizing gW′(hW(x)) for
being dissimilar from x, i.e., a mean square reconstruction
error (MSE). The most common approach for the encoder and
decoder is through affine mappings together with nonlinear
functions such as:

hW(x) = sh(Wx+ b),

gW′(x) = sg(W
Tx+ a).

(4)

Thereby, the set of parameters turns into Θ = {W,b,a},
where b and a are the biases and W is the weight matrix. This
scheme of shared weights is called symmetric architecture.

The proposed approach overview is shown in Fig. 1. Once
the models are trained, they generate n MSE values for each of
the p features in the dataset; these values can then be used for
failure management. This process is repeated for each model
since they are similar and can all produce MSE values.
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Fig. 2: Optical network testbed.

III. PCA-BASED APPROACH FOR FAILURE MANAGEMENT

Firstly, only data from normal conditions (i.e. without
failures) are fed into the models during the training phase.
Then, they are trained to reconstruct this data in their output
back to p dimensions after reducing to k PCs. The aim is
to minimize the MSE, which measures how accurately the
data was recreated. By learning hidden patterns from this
data, the models picture the inherent characteristics of normal
conditions.

At the end of training, MSEs are typically small, and any
remaining variances are considered acceptable. This is defined
by a set of linear thresholds automatically defined based on
a chosen h percentile value; this process limits the n MSE
values to the h% lowest for each of the p sorted vectors
from the training dataset. The highest of these values becomes
the threshold for each dimension, indicating the maximum
MSE allowed for a sample to be considered normal. These
thresholds are the core of failure management as they classify
failures and non-failures.

Once the thresholds for each individual feature p are de-
fined, the test phase, consisting of both normal and anomalous
data, is carried out by computing the reconstruction errors and
comparing them to the given threshold value for actual failure
detection. Failure localization is naturally performed in this
framework. A threshold value is automatically assigned to each
feature (i.e., telemetry parameter). If the particular feature has
an error value above that threshold, it is possible to detect and
locate the presence of the failure.

IV. RESULTS

A. Experimental Setup and Parameter Definition

To evaluate the proposed approach, the telemetry dataset
described in [10] was used. The considered testbed includes
two Ericcson SPO 1400 devices, one Wavelength Selective
Switch (WSS), and four EDFA amplifiers. At the end of the
WSS, an attenuator is installed to simulate failures, as shown
in Fig. 2. The dataset is composed of 10 hours. In the first 8
hours, two normal operation conditions (i.e., without failures)
were simulated: a stationary normal behavior during the first
6 hours and a noisy normal behavior in the remaining 2 hours
by randomly changing the attenuation at the range from 0 to
18 dB. In the remaining 2 hours among the total 10 hours, the
same behavior from the last 8 hours is simulated, but a 25dB
attenuation is added every 40 seconds, putting the network
in a failure condition for 10 seconds. After that, the WSS is
reconfigured so that the network starts working properly again.

The optical connection comprised three 80 km spans be-
tween the SPO-TX and SPO-RX. The data is collected with a
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Fig. 3: Input Power on EDFAs over time.
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sampling frequency of 3.5 seconds and consists of 4 features
corresponding to the 4 EDFAs input powers. An interpolation
technique was employed due to missing values in the original
data set, generating at the end 13,948 samples. Among the
samples, the first 80% of data are used for training and the
following 20% for testing. Notably, failure conditions were
exclusively part of the test phase data. Fig. 3 presents the four
features that compose the dataset and are split into training
and testing sets.
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Specifically for NLPCA, the number of epochs must be
defined preferentially when the loss between epochs is almost
constant. In that case, it was set for when the retention of data
variance is superior to 99.9%, which happens around the 12th
period (for a batch size equal to 10), as shown by the function
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Fig. 6: PCA Failure detection performance over time.
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Fig. 7: NLPCA Failure detection performance over time.

line in Fig. 4. The optimizer Adam was used for training, with
the learning rate equal to 0.001 in a machine with 12.7GB
RAM and an Intel(R) Xeon(R) CPU at 2.20GHz. The model’s
input, output, mapping, and de-mapping layers have 4 nodes
each, while the bottleneck has only 1. Finally, the activation
function for mapping, bottleneck, and de-mapping layers is
ReLu, while it’s Sigmoid for the output layer.

Regarding the training of the models, their entry is formed
by the input power of the four EDFAs for each sample,
p = 4 dimensions. For the reduction, after the fine-tuning,

the number of components established is k = 1, since it
guarantees the retention of at least 99.9% of data variance at
reconstruction for both models, as presented in Fig. 5. Finally,
in terms of threshold calculation, the chosen percentile is 99%,
since it maintains a margin of 1%. That excludes large MSEs
from non-failure samples with abnormal behaviors.

B. Comparison Results

The proposed approach is evaluated using the statistical
concepts of Type I and Type II errors. In this context, a
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TABLE I: Percentage of errors Type I and Type II for each
EDFA by method.

NLPCA PCA
Type I(%) Type II(%) Type I(%) Type II(%)

EDFA1 0.42 3.4 3.4 3.26
EDFA2 0.29 - 2.42 -
EDFA3 26.51 - 7.61 -
EDFA4 0.46 - 22.46 -
Average 6.92 3.4 8.97 3.26

Type I error occurs when normal condition data is incorrectly
classified as a failure (false-positive), while a Type II error
occurs when failure condition data is incorrectly classified
as normal (false-negative). Among these, Type II errors are
considered the more severe for the context under evaluation.
The results obtained are represented in Table I as the percentile
of errors. The general overview of anomaly detection over time
is presented in Fig. 6 and Fig. 7 for each amplifier, with the
outliers marked yellow.

The results verify that the average test accuracy is 90.19%
for PCA and 92.23% for NLPCA. Also, the linear version
triggered 2.05% more false alarms than the other on the tests,
not being as accurate as the latter. However, PCA had only
0.14% fewer underreports of existing failures, a value that
lacks statistical significance and is only marginally better.

Recognizing that different models may be biased towards
minimizing one type of error, the possible impacts on the
usage of each particular PCA-based algorithm are discussed.
In an environment where Type II errors need to be reduced
the most—given the extreme consequence of false-negative
errors for optical networks—the best choice would be PCA.
Otherwise, in specific situations where Type I is demanded to
be low, NLPCA might be the best option.

Nonetheless, there might be situations where the goal is
good cost-benefit performance. In that case, despite NLPCA
taking longer to train with higher complexity than PCA, it is
understood that PCA is the most efficient. Thus, although the
non-linear version presented slightly better accuracy results,
linear PCA is less computationally costly and can generate
acceptable predictions.

Additionally, analyzing Table I, the plots in Fig. 6 and Fig.
7, it is evident that EDFA 3 was largely responsible for the
number of failures in both models due to the data process
acquisition for this dataset concerning its distribution for this
EDFA. As seen in Fig. 3, for EDFA 3, the normal data during
the training phase differed significantly from test data, even
with both being made of data under normal conditions. Thus,
it can be stated that it was not an issue caused by the model.
However, EDFA 1 is the only one that exhibited failures, which
leads to the interpretation, based on Table I, that EDFAs 2 and
3 were well-predicted with PCA, whereas EDFAs 2 and 4 had
a better fit in the case of NLPCA.

V. CONCLUSIONS

This work introduced a comparative study between PCA
techniques, revealing interesting nuances regarding their ef-
fectiveness in the simulated optical network scenario. Regard-
ing the NLPCA results, a slight advantage over linear PCA

was exhibited (2.05% in detection accuracy). However, this
advantage was minimized due to the limited learning environ-
ment, resulting in NLPCA performance below expectations
in EDFA3, substantially increasing false alarms. Additionally,
linear PCA draws a lower number of Type II errors. As
aforementioned, reducing this type of error is crucial for the
optical link context. Nonetheless, considering the complexity
of implementing each method and the results obtained for
the specific scenario evaluated, NLPCA may be chosen as
the more adequate model. These findings underscore the
complexity of selecting the most suitable technique to optimize
performance in specific application scenarios.
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