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Abstract— This study presents the application of a method
to detect unauthorized airstrips in the Brazilian Amazon using
synthetic aperture radar (SAR) images from the Sentinel-1
satellite. There are illegal activities, such as mining and drug
trafficking, which use these airstrips for their operations. Fur-
thermore, the area is known for its dense vegetation. A YOLOv8
model was trained on a database comprising 646 training,
277 validation, and 117 generalization testing images. Results
demonstrate the model’s effectiveness in identifying unauthorized
airstrips, highlighting its potential for monitoring remote regions.
The central experiment correctly identified 46 out of 117 landing
strips.
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I. INTRODUCTION

The Brazilian Amazon, covering over 5 million square
kilometers, is a vast and diverse territory rich in biodiver-
sity and natural resources [1]. However, this region faces a
series of challenges related to illicit practices. A growing
concern is the presence of unauthorized airstrips, which are
frequently used for illegal activities such as mining and drug
trafficking [2], [3]. Moreover, they are difficult to detect
and monitor using visible spectrum satellite images due to
the dense and constant cloud cover in the Amazon during
certain periods of the year. This high prevalence of cloud
cover complicates detecting illicit activities and assessing of
environmental changes [4]. In this context, Synthetic Aperture
Radars (SAR) has been a tool capable of overcoming such
challenges by providing high-resolution images of terrestrial
and maritime surfaces, irrespective of weather conditions and
sunlight. The effectiveness of SAR radars in detecting targets
and environmental changes, even in extensive areas and under
various atmospheric conditions, is documented and recognized
[4]–[9]. Figure 1 presents a SAR image obtained even under
adverse weather conditions.

However, the complexity and multifaceted nature of these
images can pose a significant challenge for human interpre-
tation [6]. Given this complexity, integrating computational
resources, such as Artificial Intelligence (AI), has proven to be
a solution for extracting information from SAR images. With
its capabilities for deep learning and processing large volumes
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of data, AI provides support to expedite decision-making using
these images [4]–[7], [10], [11]. Some results presented in
studies involving the automatic detection of targets in radar
images point to a promising scenario for the use of artificial
intelligence for this purpose [5], [6], [10], [11].

The thesis proposed in [6], for instance, introduces the
application of a Convolutional Neural Network (CNN) for the
automatic detection of small vessels in SAR images acquired
by the ICEYE constellation. The central motivation of the
work is to enhance vessel detection methods in scenarios
where traditional visual techniques are limited, using the
YOLOv4 network, adapted for identifying vessels in SAR
images with a spatial resolution of 2.5 meters per pixel. The
central experiment achieved a Mean Average Precision (mAP)
of 64% and a global accuracy of 82.75% in generalization
testing. However, it was observed that the developed algorithm
exhibited a high rate of false alarms in high sea regions not
included in the training, indicating the need for more data to
refine the model and its generalization capability.

Suresh et al. [12] propose one of the first methods for
automatically detecting oil spills in SAR images from the
ENVISAT satellite. In this study, one observation was the
dark tone displayed by these patches in the images due to
diffraction effects occurring in backscatter. The automatic
detection methods were able to distinguish oil spills from other
similarly dark structures, achieving up to 76% accuracy in
identifying the targets of interest.

Regarding the using a lighter YOLO model for object
detection, Pang et al. [5] propose the YOLOv5-MNE for ship
detection in SAR images, aiming to overcome the challenges
posed by unclear outlines of targets and complex image
backgrounds. The proposed solution is to be efficient in terms
of training speed, execution memory, and model parameter
count, maintaining acceptable accuracy in large datasets. The
study introduces the MNEBlock module and replaces the
Sigmoid Linear Unit (SiLU) activation function with the
Rectified Linear Unit (ReLU) at the network’s output. The
intent was to reduce the number of parameters and incorpo-
rate the Coordinated Attention (CA) mechanism to enhance
detection performance. The results show that the YOLOv5-
MNE algorithm achieves a precision of up to 94.8%. The
research also addresses studies to assess the impact of different
modules and configurations on model performance, indicating
the effectiveness of the MNEBlock and the CA mechanism
in improving the precision of ship detection in SAR images.
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(a) PLANET image with
clouds

(b) PLANET image without
clouds

(c) Sentinel-1 SAR image
VV polarization

Fig. 1: Airstrip near Culuene river, Brazil. Lon: -52.8774 Lat: -12.9757

However, no studies proposing the detection of unauthorized
airstrips in the Amazon using SAR images were found.

Given the negative impacts caused by clandestine tracks
in the Amazon, the advantages of using SAR images, the
promising results from AI studies with the YOLO model, and
the lack of research on detecting these tracks using SAR, this
study aims to evaluate the performance of the YOLOv8 model
in detecting such targets. 1

This paper is structured as follows: Section 2 discusses the
technical concepts, characteristics, and functionalities of the
YOLOv8 architecture. Section 3, Materials and Methods, out-
lines the methodological procedures, including data collection,
neural network configuration, training, and the metrics used for
evaluation. Section 4 presents the study’s findings, analyzing
the performance of the YOLOv8 network in detecting unautho-
rized airstrips. Finally, the main conclusions and suggestions
for future research are provided in the Final Remarks.

II. YOLOV8
Object detection is a key area of study in computer vision,

requiring accurate and efficient models, with the YOLO (You
Only Look Once) version 8 emerging as one of the most ad-
vanced for this task. This version was created by the research
team at Ultralytics and brings significant improvements in
object detection in images through the integration of various
components and techniques. For example, the convolutional
block that combines a 2D convolutional layer, 2D batch
normalization, and a SiLU activation function, optimizing
model execution. Next, the "C to F" block in the architecture
divides the resulting feature maps for further processing, while
the bottleneck block incorporates shortcuts for training effi-
ciency and accuracy. The Spatial Pyramid Pooling Fast (SPPF)
block, a modification of spatial pyramid pooling for increased
speed, adds convolutional blocks and 2D max pooling layers,
emphasizing the importance of treating objects of various sizes
without loss of spatial information [13]–[15]. Figure 2 was
generated from reference [16], which presents a summary of
the structure of the YOLOv8 network.

Within the YOLOv8 architecture, Ultralytics developed five
model variants, to meet different performance and compu-
tational resource requirements. These are YOLOv8n (nano),

1Part of the results presented in this article was submitted to compete for
the Mapbiomas Award. This award does not imply publication. Therefore, we
consider that it does not constitute a double submission.

Fig. 2: Architecture of YOLO version 8.

YOLOv8s (small), YOLOv8m (medium), YOLOv8l (large),
and YOLOv8x (extra large). Each variant is designed to
balance precision and speed to be applicable across a wide
range of devices, from those with limited computational ca-
pabilities, such as mobile devices, to highly robust systems.
The YOLOv8n is the lightest and fastest, ideal for real-time
applications with severe hardware constraints. Progressively,
YOLOv8s, YOLOv8m, YOLOv8l, and YOLOv8x offer an
increase in precision with a proportional cost in computational
performance [17]. This version adopts an anchor-free model,
making predictions directly on grid cells. The detection block,
containing two paths for bounding box and class prediction,
optimizes the accuracy of predictions using a sequence of
convolutional blocks and a single 2D convolutional layer [17].

Overall, the YOLOv8 architecture is distinguished by its di-
vision into three main parts: Backbone, Bottleneck, and Head.
The Backbone functions as a feature extractor, the Bottleneck
effectively combines these features, and the structure’s part
called the Head makes the final predictions of classes and
bounding boxes. The simplification in the integration between
the Backbone and Head reflects a more direct and efficient
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approach to object detection, consolidating YOLOv8 as a tool
to tackle complex challenges in computer vision [17].

III. MATERIALS AND METHODS

Initially, the position of the airstrips was verified in Map-
Biomas, a multi-stakeholder collaboration involving academia,
technology firms, and NGOs in Brazil, focused on mapping
and monitoring changes in land use and cover nationwide
using advanced remote sensing and geospatial analysis. The
project provides geographic data, including locations of au-
thorized and unauthorized landing strips, assisting in logistical
planning and field studies in the Amazon. Figure 3 shows the
location of the airstrips mapped by the project.

Fig. 3: Airstrips in the Amazon Rainforest recorded by MapBiomas.

The list of geographical coordinates, expressed in decimal
degrees of longitude and latitude, was compiled to identify
locations with unauthorized airstrips. This list was incorpo-
rated into a Python script executed in the Google Colab en-
vironment. The initial script procedure involved installing and
configuring the Google Earth Engine (GEE) API, providing
full access to the platform’s data manipulation and geospatial
analysis capabilities. For each location identified as containing
an airstrip, an image slice was taken, covering an area of 4 km
square in 200 × 200-pixel images from the Sentinel-1 satellite,
corresponding to the year 2023 (the year of the last update of
the MapBiomas airstrip database). The images were obtained
in the Interferometric Wide (IW) mode and vertical-vertical
(VV) polarization. Figure 4 exemplifies two images from the
dataset.

Fig. 4: Examples of images generated for the dataset.

Subsequently, the selected images were exported for storage
in the cloud, followed by downloading for processing in a

local environment. To prepare the images for analysis using the
YOLOv8 neural network, the original data was converted to
the PNG format using 8-bit integers. The images were labeled
in the standard required by YOLOv8, using bounding boxes
created directly on the SAR images with Python, aided by the
use of high-resolution images from PLANET, corresponding
to the exact dates as the SAR images. This approach was
adopted due to the need for accurate identification of the
airstrips, as the visual characteristics of these structures often
appear indiscernible in radar images. Moreover, the targets are
volatile: the airstrips can be temporary, with vegetation quickly
covering previously deforested areas, or they can emerge sud-
denly due to illicit activities such as mining, requiring checks
in visible spectrum images for their existence to ensure correct
labeling. At the end of the image acquisition process, 1040
airstrips were obtained. The targets were randomly divided as
follows: 646 images for training, 277 for validation, and 117
for generalization testing. The pre-trained YOLOv8x model,
chosen for this study, has the most robust architecture in the
series, with 68.2 million parameters, making it particularly
suitable for scenarios that require high precision and superior
performance. This model was trained using a 16GB V100 GPU
to handle large datasets and high computational complexity.

IV. EVALUATION OF RESULTS

The chosen metric for training was the mAP, a standard
in the evaluation of object detection models. This standard
provides a comprehensive measure of precision across differ-
ent IoU (Intersection over Union) thresholds. This metric en-
sures the model’s effectiveness in accurately detecting objects,
considering both the ability to correctly locate objects and to
minimize false positives.

During the training, the model reached a stopping point at
epoch 239 due to the EarlyStopping mechanism, which did not
identify significant improvements in the last 50 epochs. The
most important results were observed at epoch 189, where the
model achieved an mAP of 0.453, evaluating the predictions
with an IoU of 50% (mAP50). The model also achieved
an mAP of 0.185 when considering the mAP 50-95. The
F1-Score-Confidence curve illustrates the model’s ability to
balance precision and recall. This score is a composite metric
that harmonizes the precision and recall of the model into
a single indicator, ranging from 0 to 1, where 1 represents
perfect performance. Confidence, in turn, reflects the proba-
bility attributed to detection by the model. By adjusting the
confidence threshold, the F1 curve reveals the optimal point at
which the model effectively balances precision and recall. In
this case, it is observed that the model achieved a maximum
F1 score of approximately 0.49 at a confidence point of 0.378.
The results indicate an intrinsic challenge in discriminating
between airstrip and background, showing a tendency for
significantly higher false negatives than false positives. This
tendency may be associated with the fact that some airstrips do
not display features completely visible at this resolution level
(10 meters per pixel). On the other hand, the relatively lower
number of false positives reveals the network’s capability to
not confuse linear relief features with the targets of interest.
Figure 5 presents the F1 curve in relation to confidence.
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Fig. 5: Validation F-1 curve

At its best during the validation phase, the network correctly
detected 133 of the 277 airstrips, while 144 were erroneously
classified as false negatives (background). Additionally, in 50
instances, the model indicated an airstrip’s presence where
there was none (false positives). Table I presents the confusion
matrix.

Airstrip(True) Background(True)

Predicted Airstrip 133 50

Predicted Background 144 –

TABLE I: Validation Confusion Matrix

A total of 117 airstrips were set aside for the generalization
test. The targets were classified into three difficulty levels in
terms of detection by visual inspection by a human analyst:
easy, medium, and difficult. Considering these three levels, the
number of targets was distributed as follows: 58 airstrips of
difficult visibility, 19 medium level, and 40 easy.

V. DISCUSSION

The initial analysis pertains to airstrips that are easily
identifiable by human analysts. These targets are clearly visible
in SAR images and do not have other structures nearby that
could cause confusion. Out of 40 airstrips, 39 were correctly
detected. Figure 6 presents two examples, a correct detection
and the only easily detectable airstrip (with the portuguese
term "pista" in the boudingbox) that was missed. This result in-
dicates a high success rate of the network in detecting isolated
airstrips or those that do not share significant similarities with
adjacent structures. However, the failure to detect the other
airstrip raises questions about the algorithm’s limitations in
the presence of complex urban elements. It is possible that the
network was confused by overlapping patterns or the proximity
of similar linear structures, such as streets. A hypothesis to
improve the YOLOv8 network’s accuracy in detecting airstrips
in complex urban scenarios is to enhance training with a
more diverse dataset, including numerous examples of airstrips
adjacent to various urban forms. This could lead to better

results in distinguishing airstrips from other linear structures
not intended for this purpose.

Fig. 6: Results for easy-to-see airstrips a) (lon: -61.9338 lat: -0.8771)
b) (lon: - 52.3945, lat: -10.1587)

About the airstrips considered of medium difficulty, 6 of
19 were detected correctly. Of the medium-difficulty airstrips
not detected, three cases corresponded to the presence of false
positives. In these three cases, straight segments of streets or
roads led to erroneous detection by the YOLOv8 network.
Figure 7 exemplifies one of these cases. Of the 58 airstrips
considered difficult, one target was detected correctly. Of the
57 cases not detected, 8 presented false positives. Of these,
two cases had false positives generated due to the contrast
presented by a cluster of trees and a deforested land. Figure 8
presents an example of each case, a correct detection and a
wrong detection caused by a cluster of trees. The performance
observed in medium and high-difficulty cases, while revealing
certain challenges, underscores the potential for significant
improvement with a more comprehensive training dataset. By
utilizing a more robust and diverse database, encompassing
a broader range of airstrips in various environments and
conditions, the network’s ability to generalize and accurately
detect targets could be substantially enhanced. This approach
would enable YOLOv8 to learn from a wider array of features
and scenarios, thereby increasing its efficacy. Specifically,
incorporating additional examples of airstrips in proximity to
other linear infrastructures would refine the network’s capa-
bility to distinguish airstrips from similar structures, leading
to more reliable and accurate detections in complex settings.

VI. CONCLUDING REMARKS

This study demonstrated the capability of the YOLOv8
network in identifying unauthorized airstrips through SAR
images in the Amazon region, utilizing a database composed
of 646 images for training, 277 for validation, and 117 for
generalization tests. The model’s effectiveness in detecting the
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Fig. 7: Results for airstrips of medium difficulty to see a)(lon:-
57.5819, lat: -6.8842) b) (lon: -48.4788, lat: -4.2370)

Fig. 8: Results for hard-to-see airstrips. a)(lon:-56.6452, lat:-5.5831)
b)(lon: -49.7681 lat:-7.5793)

airstrips points to the possibility of using computer vision for
monitoring vast forest areas. The precision achieved, despite
facing difficulties distinguishing between actual airstrips and
other natural linear features, shows a promising adaptability of
the model for complex and densely vegetated scenarios like
the Amazon. The importance of continuing the development
and refinement of image processing and machine learning
techniques is emphasized. Enhancing these technologies is
crucial for increasing accuracy and reducing rates of false
positives and negatives, thereby facilitating their practical
application on a large scale.
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