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Abstract— The occurrence of failures in transparent optical
networks (TONs) potentially compromises their reliability, lead-
ing to loss of information or even link disruption. In that regard,
as the conventional methods for failure management become
difficult with the increasing complexity of TONs, the use of ma-
chine learning algorithms has emerged as an alternative strategy
given their sole capabilities concerning network scalability and
self-awareness. Therefore, in this paper, the failure management
performance of three cluster-based algorithms (k-means, fuzzy
c-means, and Gaussian mixture models) are compared on a real-
world testbed in terms of failure classification errors.

Keywords— Clustering, Failure Management, Unsupervised
Learning, Optical Networks.

I. INTRODUCTION

Failure management in transparent optical networks (TONs)
is critical for network reliability maintenance. Optical trans-
mission is affected by the occurrence of failures, leading
to degradation in the quality of transmission and service
level agreements (SLA) violations [1], [2]. In that sense, the
fulfillment of SLA can ensure an effective monitoring of the
physical layer regarding the occurrence of failures [3].

Powered by the increasing advances in several fields (e.g.
cloud computing, internet of things, 5G applications), the
parameter complexity of TONs has grown, as the number
of optical devices (e.g. EDFAs, repeaters, transponders, etc.)
increases. Consequently, the conventional methods for failure
management become inefficient, as they are commonly based
on simplified threshold and probabilistic statistical models.
Correspondingly, machine learning (ML) algorithms have been
attracting attention for failure management in optical networks.
These techniques can automate complex tasks, ranging from
pattern recognition to forecasting, which often require human
labor, and are also time-consuming. Hence, the use of ML
algorithms can enable automated self-awareness networks ca-
pable of performing effective failure management [4], [5].

However, most of the ML-driven studies for failure manage-
ment in TONs are focused on the use of supervised learning
approaches, such as artificial neural networks [6], [7], tree-
based algorithms and support vector machines [8], [9]. In
these cases, the models need prior knowledge of data labels,
requiring information about all possible failure conditions.
However, for optical networks, the datasets collected from
the practical operating system often present an extremely
imbalanced nature, where the volume of data under normal
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conditions (i.e. without failures) is much larger than the vol-
ume of data under failure conditions (if any). This limitation
makes supervised learning approaches unfeasible as they need
a considerable number of failure samples to be trained on.

Therefore, unsupervised learning algorithms [10], [11] have
become a promising alternative due to their ability to be
trained with only data under normal conditions, disregarding
the acquisition of data from equipment that is undergoing
failures or to simulate additional data from statistical models.
Specifically, the main goal of unsupervised learning models
is to learn hidden patterns under normal operation conditions
by recognizing underlying information. Leveraging that fact,
when anomalies (failures) are presented, they can be identified
from the residual errors, as the models were trained with
data only from the system’s normal behavior. Correspondingly,
cluster-based techniques are presented as one of the most
known unsupervised learning algorithms. The rationale of
these models is to group data points by learning their inner
distributions. Upon grouping, these data groups (clusters) may
be used to identify samples arising from a different distribution
unseen by the models.

In that regard, in this paper, three cluster-based algorithms,
namely as k-means, fuzzy c-means (FCM), and Gaussian
mixture model (GMM), are used to perform failure detection
and localization in a transparent optical network. False-positive
(type I) and false-negative (type II) indications of failures are
used for algorithm performance evaluation.

The rest of the paper is structured as follows. In Sec-
tion 2 we present the background of the three cluster-based
algorithms under study. Section 3 carries out the proposed
approach to failure detection and localization. Section 4 de-
scribes the testbed and the dataset used in our experiments,
and the failure management results of the three cluster-based
algorithms. Finally, in Section 5 we draw our conclusions.

II. CLUSTERING ALGORITHMS

A. K-means
The k-means algorithm is one of the most common unsu-

pervised clustering techniques, widely used to cluster large
data sets. The algorithm assigns each of the data samples to
one of the K clusters generated by the method. Considered
a hard-clustering algorithm, each sample belongs to only one
cluster, the one that has the smallest Euclidean distance from
the sample. The idea of the k-means clustering is to update
the centroids by calculating the mean of the samples belonging
to the cluster and repeat the relocating-and-updating process
until convergence criteria are satisfied. The number of clusters
is defined by the user and the initial positions of the clusters
are generally random [12].
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K-means aims to minimize the Equation 1, where x is the
sample belonging to the k-th cluster C and µk is the centroid
of the cluster Ck. Some iterations are necessary until the
algorithm reaches a local minimum.

J =

K∑
k=1

∑
x∈Ck

∥x− µk∥2, (1)

In this work, a failure indicator (FI) is used to analyze
whether the sample was drawn from a failure condition. Dif-
ferent clustering approaches may follow different approaches
to generate their FIs. Considering a dataset Xn×m, with n
samples of m dimensions, the k-means FIs are given using
the following Equation:

FI(xi, µj) =

√√√√ m∑
d=1

(xid − µjd)2, (2)

where xi is a sample from the dataset and µj is the closest
centroid to the sample.

B. Fuzzy C-means

Fuzzy c-means is an unsupervised clustering technique
based on centroids similar to k-means. However, in contrast to
k-means, FCM is a soft-clustering algorithm [13]. This means
that instead of each sample belonging to just one cluster,
the sample belongs to all clusters with a certain degree of
membership. This makes the equation for the centroids of each
cluster a weighted average, given by:

ck =

∑n
i=1 w

p
ikxi∑n

i=1 w
p
ik

, (3)

where xi is the i-th sample, wki is the degree of membership of
the i-th sample to the k-th cluster and p is the fuzziness param-
eter. Membership values are initially set randomly within the
range allowed by the algorithm (0 to 1) and updated after the
cluster center is calculated. The updating is given by Equation
4 as follows:

wik =
1∑n

j=1(
∥xi−ck∥
∥xi−cj∥ )

2
p−1

. (4)

The FCM algorithm updates the membership values until
Equation 5 reaches a local minimum or a pre-defined number
of iterations. Note that k-means aims to minimize the same
equation, just restricting the membership values.

J =

N∑
i=1

K∑
k=1

wp
ik∥xi − µk∥2. (5)

The FIs for the FCM are the same as that of k-means since
both algorithms are based on the same clustering approach.
For the FCM, FIs are given using the Equation 2.

C. Gaussian Mixture Model

The Gaussian mixture model algorithm performs model-
based data clustering. For this purpose, multivariate finite
mixture models are used, which aim to capture the main
clusters. On this wise, the GMM can learn non-linear rela-
tionships, assuming that the data can be modeled by a set of
finite multivariate Gaussian distributions. For a GMM, each
component g(x|θk) is represented as a Gaussian distribution,

g(x|θk) =
exp{− 1

2 (x− µk)
TΣ−1

k (x− µk)}
(2π)m/2

√
det(Σk)

, (6)

being each component denoted by the parameters, θk =
{µk,Σk}, composed by the mean vector, µk and the covari-
ance matrix, Σk. Thus, a GMM is completely specified by a
set of parameters Θ = {α1, α2, ..., αK , θ1, θ2, ..., θK}.

Hence, a finite mixture model, g(x|Θ), is the weighted sum
of K > 1 components g(x|θk) in Rm,

g(x|Θ) =

K∑
k=1

αkg(x|θk), (7)

where αk corresponds to the weight of each component. These
weights are positive αk > 0 with

∑K
k=1 αk = 1.

To estimate the GMM parameters, the expecta-
tion–maximization (EM) local search method is one of
the most used [14], [15]. This method consists of two
steps: i) expectation and ii) maximization. In order for the
log-likelihood (LogL), log(g(X|Θ)) = log(

∏n
i=1 g(xi|Θ))

to converge to a local optimum, the two steps are applied
alternately. The performance of the EM algorithm directly
depends on the choice of initial parameters Θ [16], as a poor
choice of the initial parameter can result in many replications
of this method during an execution.

The FIs for GMM differs from other algorithms presented.
In this case, the squared Mahalanobis distance is used to
calculate the FIs. Unlike the Euclidean distance, it takes into
account the distribution of the data, for which the FIs are given
using the following equation:

FI(xi|θk) = (xi − µk)Σ
−1
k (xi − µk)

T , (8)

where xi is a sample from the dataset and θk is the closest
component to the sample.

III. CLUSTER-BASED FAILURE MANAGEMENT

To detect and locate failures in the optical network, this
paper uses the approach shown in Fig. 1. The first phase
consists on model training, where network data under normal
conditions is used for this task. The reason for using only
normal data is that cluster models can group normal behavior
to later distinguish anomalous behavior.

Training is based on generating thresholds from the normal
condition. For this, the model groups the normal data into
clusters and generates FIs (different algorithms can have
different ways of generating FIs). Thresholds are generated
using the 99th percentile of the FIs since clustering algorithms
based on centroids (k-means, FCM) and distributions (GMM)
are sensitive to outliers. For localization purposes, FIs and
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Fig. 1: Proposed approach.

thresholds are generated for each feature. Since the detection
is done by feature, the failure localization for each span is
made by analyzing the errors in the input power of the EDFA.

In the testing phase, unlabeled data from the network is
presented to the trained model. The model generates FIs for
each feature in the sample. After that, each feature has its
FI compared to its specific thresholds previously defined in
the training phase. If the FI exceeds the thresholds, then it is
considered under failure condition, otherwise, it is considered
normal. Since the model was trained only on the features of
the EDFAs, this approach allows us to detect the failure and
localize it through the EDFAs.

Properly mapping the normal condition of the network is
important to ensure adequate failure management. For this
reason, it is extremely important to define an appropriate
number of clusters so that the models can better capture the
normal behavior of the network. In this work, we use the
Akaike information criteria (AIC) to define the number of
clusters [17]. AIC uses the negative log-likelihood and adds
a penalizing term associated with the number of variables,
penalizing more complex models. The AIC is given by:

AIC = −2L(M) + 2v(M), (9)

where L(M) is the log likelihood function and v(M) is the
number of free parameters in the model M .

IV. RESULTS

A. Testbed and Dataset

The experimental data is collected from the TON testbed
(Fig. 1) available in [18]. It includes two Ericcson SPO 1400
devices, one wavelength selective switch (WSS), and four
EDFA amplifiers. At the end of the WSS, an attenuator is
installed to simulate failures. The optical link between the
SPO-TX and SPO-RX consists of 3 spans of 80 km each. The
data is collected with a sampling frequency of 3.5 seconds
and 4 features are used in this work, corresponding to the
4 EDFAs input powers. The dataset consists of 8252 data
points (10 hours), where the first 7067 samples under normal

conditions (8 hours) are used for training and the remaining
1185 samples under failure and normal conditions (2 hours)
are used for testing. It is important to note that failure samples
are presented only in the percentage of data corresponding to
the test phase. Fig. 2 presents the four features composing the
dataset and splitting it into training and testing sets. As the
attenuator is placed between WSS and EDFA1, only the input
power of EDFA1 presents significant variations in the testing
set.

Moreover, one can note in Fig. 2 two distinct distributions
along the training set. The first 6 hours are composed of
data under real normal network condition, with no changes
applied with the WSS. While the remaining 2 hours are still
composed of data under normal conditions, but with variations
in attenuation. The WSS is used to randomly change the
attenuation every 10 seconds in a range from 0 to 18dB. These
variations are used for model generalization concerns as they
provide different information from the normal condition of
network traffic. However, in the two hours of the testing set,
WSS is used to add 25dB attenuation every 40 seconds, thus
placing the network under a failure condition for 10 seconds
(hard-failure). After that, the WSS is reconfigured so that the
network works correctly again.
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Fig. 2: Optical dataset along with the training and test data.
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B. Comparison Analysis

In this subsection, the analysis is divided into two parts.
Firstly, as a previous step of the optical failure management,
the AIC (Equation 9) is calculated for each clustering model to
choose its respective number of components. A set of number
of components ranging from 2 to 10 components is evaluated.
The AIC is executed 20 times for each number of components
and the average value is considered at the end, since the
algorithms are seed sensitive.

As shown in Fig. 3, the k-means, FCM, and GMM models
showed the same optimal number of components (2), as the
minimum AIC values were drawn for the first model. More-
over, k-means and FCM presented almost the same AIC values
for each number of components. In this sense, to provide
specific results with respect to a failure detection strategy,
the best models are selected based on the AIC. Therefore,
k-means, FCM, and GMM with 2 components are evaluated
in the second part of this subsection. The outlier detection
performance of these compared techniques is evaluated in
terms of type I (false-positive) and type II (false-negative)
indications of failures based on a linear threshold defined for
the 99th percentile of the training data.
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Fig. 3: Average AIC values for 20 trials of each cluster-based
algorithm for varying number of components.

The failure detection performance of the three approaches
is summarized in Table I. Note that type II indications are
not presented for EDFA2, EDFA3, and EDFA4, as no failures
were simulated at these equipments. The table shows that all
models present marginal differences in results over the two
comparison metrics. However, one may note in Table I that
the models misclassified some failure samples presented in
EDFA1, corresponding to the respective type II errors. Part
of this is due to the simulated process of failures in the
dataset. When the failure condition was simulated, although
the label of the respective sample was set to failure, the system
gradually changed from one state to the other, creating a few
samples labeled as “failure”. Thus, those not detected failure
samples have characteristics related to normal conditions.

Another important detail is the relative high rate of type

Model Amplifier Type I (%) Type II (%)
K-means EDFA1 0.8812 3.3616

EDFA2 0 -
EDFA3 27.4151 -
EDFA4 0 -

FCM EDFA1 0.6854 3.4595
EDFA2 0 -
EDFA3 27.4151 -
EDFA4 0 -

GMM EDFA1 0 3.4922
EDFA2 0 -
EDFA3 26.5339 -
EDFA4 0 -

TABLE I: Failure detection performance of the k-means, the
FCM and the GMM.

I errors in EDFA3. However, as shown in Fig. 2, unlike
other EDFAs, the EDFA3 input power values do not present
a significant amount of data with variation from the normal
condition during the period used for training. Therefore, this
fact affects the failure detection performance of the clustering
models by reducing model generalization when submitted for
failure scenarios in the test phase.

In that regard, for further analysis, the FIs for the EDFA1
derived from the three clustering approaches are shown along
the threshold and over time in Fig. 4. From a general per-
spective, all the models successfully detect/locate the failure
presented at the EDFA1 equipment. Red points in the Fig. 4
(EDFA1 for the three clustering models) are majority arranged
above the threshold line, corresponding to around 85% of the
711 failure samples.

In fact, all the previous analysis demonstrate all the ap-
proaches achieved marginal differences in results. To find the
most appropriate model, we closely look at type I and II errors.
For type I errors, the model accuses the network of being
in a fault condition, even though the network is in a normal
state. From an economic point of view, the maintenance costs
associated with a recurring type I error can be a problem,
increasing the OPEX. In this scenario, GMM may be the
most appropriate option, since it presented a marginally better
result. However, the situation changes when we look at the
type II error. In this scenario, the model indicates normality
while the network is in a fault condition. This error affects
the availability of network services. For a scenario where
network availability is absolutely critical, k-means may be the
most suitable as it presents marginally better results than other
algorithms for type II errors.

V. CONCLUSIONS

In this paper, we proposed a comparison study of three
cluster-based algorithms for failure detection and localization
in TONs. The application of these unsupervised models allows
the use of this technique for cases when data under fault con-
ditions is a problem. Moreover, their performance comparison
in terms of type I/II errors demonstrates marginal differences
in tests for the real-world testbed evaluated. Hence, a more
detailed analysis of type I and II errors was provided to choose
the most appropriate model. For cases where maintenance is
expensive, the GMM algorithm outperforms the others, as it
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Fig. 4: Failure detection performance of the proposed approaches for EDFA1.

achieved the best results in type I errors. For cases where
network availability is a absolutely critical, k-means has an
advantage over other algorithms in terms of type II errors.

In future works, new studies to evaluate the performance
of other existing clustering algorithms, in terms of failure
management in optical networks, should be carried out. Fur-
thermore, failure forecasting will be further evaluated by
analysis related to the temporal characteristics of the data,
providing crucial resources for failure prediction.
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