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A Novel Technique for Generation of Correlated Bit
Sequences with Application to Gaussian Channels

Micael Andrade Dias, Juliana Martins de Assis and Francisco M. de Assis

Abstract— There are many applications to random sequences
of bits, such as in computer science and cryptography. In this
paper, we propose a low-complexity technique for generating
sequences of correlated or uncorrelated bits. This technique
allows the generation of different pairs of bits with the same
correlation, as also controls if the bits are equiprobable on {0, 1}
or not. Additionally, we derived an expression and a numerical
approximation to the performance of a binary symmetric channel
obtained from the binary expansion of transformed Gaussian
correlated random variables, which is related to a recently
proposed scheme for quantum key distribution with continuous
variables. Simulation of this binary symmetric channel agrees
with the obtained expression and numerical approximation.
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I. INTRODUCTION

Random sequence of bits are used in many applications.
As examples, we mention complex numerical simulations, as
seen in references [10], [12]. Moreover, distributed simulation
of random variables are necessary in quantum computing and
theoretical computer science [11]. The simulation of correlated
Bernoulli vectors and its posterior summation has also appli-
cations in biology, where single nucleotide polymorphisms are
involved with the risk of certain diseases [7]. Correlated bit
streams are especially necessary in the context of stochastic
computing [8], [1], and in cryptography [6].

Both real random processes and deterministic systems may
produce random (or pseudorandom) sequences of bits [9]. For
example, some papers propose the use of chaotic maps for a
pseudorandom bit generation [3], [9]. Other papers propose
using circuits and semiconductor lasers [10], [8], or even
vacuum field fluctuations of an eletromagnetic field [12] to
generate a random sequence of bits.

Mathematically speaking, a sequence of correlated bits may
be undestood as the realization of a multivariate Bernoulli
vector. We must notice, however, that given fixed marginal
Bernoulli distributions, not all correlation matrices of the
corresponding multivariate Bernoulli vector are possible [5].
The general correlation structure between any pair of random
variables has been exploited in Fréchet-Hoeffding bounds,
where any achievable correlation is a convex combination
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between these bounds. Specifically, there is a convexity pa-
rameter λ ∈ [0, 1] which assumes value one when the upper
correlation bound is achieved [4].

Interestingly, there is an important connection between
arbitrary multivariate distributions and multivariate Bernoulli
distributions. Assume the existence of a certain convexity
parameter λ between a pair of random variables from a random
vector with fixed marginals. Then, this value λ is possible if
and only if there exists the same convexity parameter λ for a
pair of Bernoulli variables (where the Bernoulli marginals have
mean 1/2)[4, Theorem 2, p.604]. Thus, the problem of creating
a sequence of correlated Bernoulli variables is equivalent to
the more general problem of creating a random vector from
other multivariate distributions.

When considering specially the context of cryptography, a
random sequence of bits is essential, since the security of a
cryptographic scheme must rely on its key. Recently, a new
protocol for continuous variable quantum key distribution was
developed by the authors, namely, Distributional Transform
Expansion (DTE) [2]. The idea of this protocol is to use
the copula theory to perform a transformation in the random
variables in the input and in the output of the Gaussian
channel. Also, the protocol expands these transformed random
variables in a binary basis. The generated bits from this
expansion are related as if they were input and output from
binary symmetric channels (BSC).

In this paper, we address two main topics. Firstly, we
propose a new method for generating random sequences of
bits, with specific correlations between them. The method
consists in generating a continuous random variable with
support in the interval [0, 1], respresenting it in its binary form
(numeral−2 base) and then taking a number of binary digits
after the point as the Bernoulli sample. For instance if the
trial equals 0.72 we take this binary form 0.101110 . . . and
the size 6 sample is {1, 0, 1, 1, 1, 0}. Despite the fact that our
method does not allow for arbitrary correlations between any
pair of bits, as will be shown in the simulations, it presents
some interesting properties: (i) existence regions of equal
(or nearly equal) correlations between different pairs of bits,
(ii) low implementation complexity and (iii) parametrization
by the distribution. By controlling, for example, the beta
distribution parameters α and β, it is possible to control not
only the correlations between some pairs of bits, but also if
the generated bits are uniformly distributed on {0, 1} or not.

Secondly, we evaluate the performance of a BSC obtained
from the DTE protocol. Both topics are related to the bi-
nary expansion of random variables. However, the first topic
deals with a single random variable, and determines how the
Bernoulli variables achieved from its binary expansion are
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correlated. On the other hand, the second topic is more directly
related to communication systems, dealing with two different,
but correlated, random variables, and how the BSC obtained
from their binary expansion performs.

The rest of the paper is organized as follows. Section II
introduces some definitions that will be useful for obtaining the
results, which are presented in Section III and in Section IV.
Section V presents some simulations that corroborate with our
findings in the previous sections. Finally, Section VI concludes
the paper and presents directions for future work.

II. PRELIMINARIES

Here we introduce some definitions that will be useful for
the remaining of the text. Firstly, let X be a continuous random
variable with probability density function fX and support on
[0, 1]. A binary expansion of X with n bits precision will
partition the unit interval in 2n disjoint subsets of same length.
If we write the n-bit binary expansion of X ∈ [0, 1] as X =
0.B1B2 · · ·Bn such that X =

∑n
i=1 Bi(

1
2 )

i, one has that the
values of the bits are

B1 =

{
0, if X < 1/2,

1, if X ≥ 1/2,

B2 =

{
0, if X ∈ [0, 1/4) ∪ [1/2, 3/4),

1, if X ∈ [1/4, 1/2) ∪ [3/4, 1],

and for any positive integer i of the binary expansion we have:

Bi = I{X ∈ ∪2i−1

j=1 [2
−i · (2j − 1), 2−i · 2j)}, (1)

where I{A} is the indicator function of an event A, which
equals 1 when A occurs and 0 otherwise.

In Figure 1 we exemplify how the binary expansion works
and the corresponding bit values for n = 3. Each possible x ∈
[0, 1] is contained in one of the partitions and is represented
by a unique n-bit binary sequence.

0 1
2 1

0 0 0 0 1 1 1 1

0 0 0 01 1 1 1

0 0 0 01 1 1 1

B1

B2

B3

Fig. 1: Unit interval partition according to a 3-bit binary
expansion and the bits corresponding values.

Two questions naturally arise: what is the distribution of
Bi and are they correlated? Clearly, Bi ∼ Bern(pi) and
pi and cor(Bi, Bj) depends on the choice of fX , but in
which conditions pi = 1

2 and cor(Bi, Bj) = 0? In the
next two propositions we prove statements about how X
must be distributed in order to give the desired correlated
(or uncorrelated) distributions of Bi. For the sake of clarity
in the following arguments, let us define that a symmetric
probability density function of a random variable X around
1
2 as a function fX : [0, 1] → R such that for any ε ∈ [0, 1

2 ],
fX( 12 − ε) = fX( 12 + ε).

III. CONDITIONS FOR SYMMETRY AND INDEPENDENCY

Here we present two propositions about the sequence of
bits generated by the binary expansion of the realization of a
random variable with support on [0, 1].

Proposition 1: The bits in the n-bit binary expansion of
a continuous random variable X with probability density
function fX and support on the unit interval are Bern(1/2)
for any n ∈ N if and only if fX is symmetric around 1/2.

Proof: (→) Let us define the family {An}n≥1 of collec-
tions of disjoint subsets of [0, 1] of length 2−n:

• A1 = {[0, 1/2), [1/2, 1]},
• A2 = {[0, 1/4), [1/4, 1/2), [1/2, 3/4), [3/4, 1]}

and so on. Note that
⋃

A∈An A = [0, 1] for any n. Let us also
enumerate the subsets in An from 1 to n. Then, the n-th bit in
the binary expansion of x informs whether x lies in an even
of odd numbered subset of An:

• Odd numbered subset of An: bn = 0,
• Even numbered subset of An: bn = 1.
Now, define An

0 and An
1 as the set of odd and even (respec-

tively) numbered subsets in An. Then, if fX is symmetric
around 1

2 ,∫
An

0 [j]

fX(x)dx =

∫
An

1 [2
n−1−j+1]

fX(x)dx, (2)

where j = 1, · · · , 2n−1. Also, we have that

Pr[Bn = 0] = Pr[X ∈
2n−1⋃
j=1

An
0 [j]] (3)

=

2n−1∑
j=1

∫
An

0 [j]

fX(x)dx (4)

=

2n−1∑
j=1

∫
An

1 [2
n−1−j+1]

fX(x)dx (5)

= Pr[X ∈ An
1 ] = Pr[Bn = 1]. (6)

Then, Pr[Bn = 0] = Pr[Bn = 1] = 1
2 if fX is symmetric

around 1
2 .

(←) To show that the bits in the binary expansion are
Bern( 12 ) only if fX is symmetric around 1

2 , assume that fX
is not symmetric around 1

2 . Then, there exists an ε such that
fX( 12 − ε) ̸= fX( 12 + ε). Also, there is some n ≥ 1 and at
least one j ∈ {1, 2, · · · , 2n−1} such that∫

An
0 [j]

fX(x)dx ̸=
∫
An

1 [2
n−1−j+1]

fX(x)dx. (7)

Then, Pr[Bn = 0] = Pr[Bn = 1] = 1
2 only if fX is

symmetric around 1
2 .

Example 1: Consider X a random variable that follows the
trapezoidal distribution, where fX(x) is illustrated in Figure
2 and D − C = 1

4 is fixed. Consider also that 0 ≤ C ≤ 3
4 .

In the binary expansion of X , the probability Pr[B1 = 1] =
Pr[X ≥ 1

2 ] = 1 − FX( 12 ), which is a function of the value
of C. In Figure 3 we plotted the probabilities Pr[Bi = 1] for
the case of a binary expansion with n = 2. We can see that
both bits are equiprobable when C = 3

8 , that is, the fX is
symmetric around 1

2 .
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Fig. 2: Trapezoidal Distribution.
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Fig. 3: Bit probabilities Pr[B1 = 1] (blue) and Pr[B2 = 1]
(red) in the binary expansion of the trapezoidal distribution as
a function of C.

Proposition 2: The bits in the n-bit binary expansion are
independent if fX = U(0, 1).

Proof: (→) Assume that fX = U(0, 1). Now consider an
n-bit binary expansion of x drawn from X . Each possible n-bit
sequence corresponds to an interval of length 2−n. Since X ∼
U(0, 1) by hypothesis, the n-bit sequences are equiprobable:
p(b1, · · · , bn) = 2−n. For any two i, j = 1, · · · , n, i ̸= j, we
have that

p(bi, bj) =
∑

∼bi,bj

p(b1, · · · , bn) = (2n−2) · 2−n =
1

4
. (8)

Then, by factoring p(bi, bj) = p(bj |bi)p(bi) and by Propo-
sition 1 ensuring that bi ∼ Bern( 12 ) for any i > 0,

1

4
= p(bj |bi)

1

2
→ p(bj |bi) =

1

2
= p(bj), (9)

from which we conclude that if X ∼ U(0, 1) then the bits in
the binary expansion are pairwise independent.

IV. FROM GAUSSIAN TO BINARY SYMMETRIC CHANNELS

In this Section we address the performance of a BSC derived
from the binary expansion of correlated Gaussian variables.
Consider the Gaussian channel model:

Y = X +
√
NZ X,Z ∼ N (0, 1), X⊥Z, (10)

where we observe that the signal-to-noise ratio and corre-
lation coefficient are given by

SNR =
1

N
= γ (11)

ρ(X,Y ) = ρXY =
1√

1 +N
(12)

Define the random variables as in [13, ch.13]

U ≡ FX(X), V ≡ FY (Y ) (13)

and consider their binary basis numerical expansions

U =

∞∑
i=1

Ui2
−i, V =

∞∑
i=1

Vi2
−i (14)

By the lemma of distribution we know that U ∼ U(0, 1) and
similarly V [13]. Also from the results (Proposition 2) {Ui}
is a i.i.d. Bern(1/2) and similarly it holds for {Vi}. Although,
as ρXY > 0, N > 0, the correlation ρUiVi

can be calculated
for the i−th BSC channel induced by the binary numerical
expansion of X and Y (see Fig. 4) Ui ←→ Vi by

ρUiVi
= 2(1− αi)− 1 (15)

where αi ≡ Pr[Vi ̸= Ui].

0 0

1 1

Ui Vi

1− αi

1− αi

αi

αi

Fig. 4: Binary Symmetric Channel (BSC). C = 1 bit/use

For now on, we take i = 1 (the first “BSC” ). The following
sequence holds

α1 = Pr[V1 ̸= U1] (16)
= Pr[V1 = 1, U1 = 0] + Pr[V1 = 0, U1 = 1] (17)
= 2Pr[V1 = 1, U1 = 0] (18)

= 2Pr[V1 = 1|U1 = 0]× 1

2
(19)

= Pr[V1 = 1|U1 = 0]. (20)

Now, back to the Gaussian channel, consider the equivalent
events:

D =
{
V1 = 1|U1 = 0

}
≡

{
FY (Y ) >

1

2
|FX(X) ≤ 1

2

}
(21)

≡
{
FY (X +

√
NZ) >

1

2
|FX(X) ≤ 1

2

}
(22)

≡
{
X +

√
NZ > 0|X ≤ 0

}
(23)

≡
{√

NZ > −X|X ≤ 0
}

(24)

≡
{
Z > −X/

√
N |X ≤ 0

}
. (25)
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Notice that the event D probability depends on X and Z
being itself a random variable. Therefore, the BSC transition
probability must be calculated by the average

α1 = EPr[D] (26)

=

∫ 0

−∞
2Q

(
−x√
N

)
1√
2π

e−x2/2dx (27)

(a)
= 2

∫ ∞

0

Q

(
v√
N

)
1√
2π

e−v2/2dv, (28)

where (a) is justified by change of variable v = −x. An
approximation for integral (28) and its generalization can be
given recalling that [14, p.83]:

Q(x) ≤ 1

2
e−

x2

2 , (29)

which, replaced in last expression for α1 yields:

α1 ≤ 2

∫ ∞

0

1

2
e−

v2

2N
1√
2π

e−v2/2dv

=

∫ ∞

0

1√
2π

e
− 1

2

(
1+ 1

N

)
v2

dv

Defining ν =
√

1
1+1/N and multiplying and dividing the

right hand by this we obtain

α1 ≤ ν

∫ ∞

0

1√
2πν

e−
v2

2σ2 dv

=
1

2

√
N

1 +N

=
1

2

√
1

1 + SNR

where the last line we observe that SNR = 1
N according the

model Y = X+
√
NZ for the Gaussian channel. We note that,

consistently, if SNR→ 0, the transition probability goes near
one half.

V. SIMULATIONS

Here we present some simulations relative to the results
in Sections III and IV. For the first topic addressed in this
paper, i.e. the generation of correlated bits, can evaluate the
covariance between bits when the probability density function
fX(x) is symmetric around 1/2, which can be computed as

cov(Bi, Bj) = E(BiBj)− E(Bi)E(Bj)

= E(BiBj)−
1

4

= Pr[Bi = 1, Bj = 1]− 1

4
(30)

It is clear that if X has uniform distribution on [0, 1], the
generated bits from an outcome of X are independent and
thus their correlation is null. In general, for any fX(x) with
support on [0, 1] and considering a 3-bit binary expansion, we
have:

Pr[B1 = 1, B2 = 1] =

∫ 1

3
4

fX(x)dx, (31)

0 5 10 15 20
−1

−0.5

0

0.5

1

α

co
r(
B

iB
j
)

i = 1, j = 2; i = 1, j = 3; i = 2, j = 3;

Fig. 5: Pairwise theoretical (continuous) and estimated (dots,
triangles and stars) correlations of bits obtained from binary
expansion of beta random variable. The beta distribution
parameters are set to α = β.

Pr[B1 = 1, B3 = 1] =

∫ 6
8

5
8

fX(x)dx+

∫ 1

7
8

fX(x)dx, (32)

Pr[B2 = 1, B3 = 1] =

∫ 1
2

3
8

fX(x)dx+

∫ 1

7
8

fX(x)dx. (33)

When fX(x) is symmetric around 1/2, since the bits are
Bern( 12 ), the correlation between any pair of bits is given
by cor(Bi, Bj) = 4 · cov(Bi, Bj), which are elements of the
correlation matrix ρ.

In Fig. 6 we plotted the theoretical values of correlations
obtained by applying the binary expansion to outcomes from
beta and trapezoidal distributions with symmetric settings. The
symmetry in the distributions is guaranteed by setting α = β in
the beta distribution, and in the trapezoidal one, C = 1

2 −∆
and D = 1

2 + ∆. We obtained not only the mathematical
values of correlation between bits in a 3-bit binary expression,
but we also provided estimates of correlation coefficients.
Specifically, we simulated 105 outcomes of a beta distribution,
for each parameter α in {0.1, 0.25, 0.75, 1, 2, 3, . . . , 20}. For
the trapezoidal distribution we sampled 105 outcomes for each
∆ ranging 10 equally spaced values from 0 to 0.5.

In Figure 5 and 6, the red curves refer to the correlation
between B1 and B2, the blue curves refer to the correlation
between B1 and B3 and the black curves refer to the corre-
lation between B2 and B3. We observe from Figure 5 that
setting α with values inside [0, 1] results in bits, in a 3-bits
binary expasion, that have approximately the same correlation,
considering any pair of bits. A similar result occurs when
setting ∆ ∈ [0.4, 0.5] in the trapezoidal distribution, as seen
in Figure 6.

Now, for the second topic addressed in this paper, we
calculated the expressions in Equation (28). We also simulated
pairs of correlated Gaussian variables and observed the BSC
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Fig. 6: Pairwise theoretical (continuous) and estimated (dots,
triangles and stars) correlations of bits obtained from binary
expansion of trapezoidal random variables. The trapezoidal
distribution is symmetric around 1

2 with upper basis equal to
∆.
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Fig. 7: Bit error probability for the simulated BSC (red dots)
and the analytical solution (blue curve) to given by expression
the in Equation (28).

obtained as explained before. Fig. 7 shows the results. Notice
that error probability in simulation agrees with Equation (28).

VI. CONCLUSIONS

In this paper we explored two main topics: how to develop
sequences of correlated or uncorrelated Bernoulli variables
and how a binary symmetric channel, induced by the binary
expansion of two “DTE” transformed Gaussian correlated
variables, performs. In the first topic, we proposed a method
for sampling Bernoulli variables from the binary expansion of
a unit support interval random variable X , obtaining a low
complexity procedure that enables pairs of bits with the same
correlation, in accordance with the parameters of the density

fX . In the second topic, we obtained an approximation to the
bit error probability of the BSC achieved from a Gaussian
channel. As expected, this bit error probability approaches
1/2 as the SNR diminishes. As future work, we may evaluate
how other BSC obtained from “DTE” transformed Gaussian
variables perform (that is, BSCs obtained for the second,
third and generally for the n-th bit in the binary expansion
procedure).
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