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Abstract— The IEEE 802.11 standard’s binary exponential
back-off (BEB) algorithm for collision avoidance, although
widely adopted, leads to sub-optimal network performance
and significant bandwidth wastage, especially in dynamic and
densely populated networks. Addressing these critical limita-
tions, our research introduces a groundbreaking decentralized
approach using advanced deep reinforcement learning (DRL)
algorithms—specifically Deep Q-Network (DQN) and Deep Deter-
ministic Policy Gradient (DDPG). By optimizing the contention
window (CW) value, our method aims to not only maximize
network throughput but also minimize collision rates. Through
rigorous simulations with NS-3 and NS3-gym, our findings reveal
that DQN and DDPG dramatically surpass BEB, delivering up
to a 37.16% enhancement in network throughput in densely
populated network scenarios. Moreover, our approach ensures
consistent and robust throughput performance as the number
of stations scales. These significant results underscore the trans-
formative potential of DRL in revolutionizing wireless network
efficiency and reliability, paving the way for more resilient and
adaptive network management solutions in increasingly complex
environments.

Keywords— Wi-Fi, contention-based channel access, channel
utilization optimization, reinforcement learning, NS-3, NS3-gym.

I. INTRODUCTION

Wireless networks are widely used across various domains,
requiring fair spectrum resource allocation to ensure optimal
performance during data transmission. A key challenge is man-
aging collisions, where simultaneous transmissions by multiple
stations cause interference and data loss. The IEEE 802.11
standard uses the Carrier sense multiple access with collision
avoidance (CSMA/CA) protocol in the Medium access control
(MAC) layer to mitigate collisions by employing a CW value,
a random back-off time that doubles with each new collision
to minimize further occurrences [1]–[3].

The BEB algorithm manages this deferring method in
CSMA/CA but has significant limitations, including sub-
optimal results under high loads, lack of adaptability, and
fairness issues [4], [5]. To address these drawbacks, machine
learning-based solutions like DRL algorithms have been pro-
posed. DRL algorithms can adapt to evolving network condi-
tions, optimizing cumulative rewards over time and providing
flexible, optimal solutions for various Wi-Fi network scenarios
[6].

A centralized single-agent DRL approach, where the agent
at the access point (AP) optimizes and broadcasts a unique
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CW value to all stations, has shown increased throughput
[7]. However, a decentralized approach offers more robustness
and efficiency, particularly in dense, dynamic scenarios. By
leveraging distributed computing, new stations can be eas-
ily integrated, accelerating convergence to optimal collision
avoidance solutions in wireless local area networks (WLANs)
[8].

Several multi-agent reinforcement learning (MARL) meth-
ods have been proposed to enhance WLAN performance with
decentralized solutions. For instance, one MARL approach op-
timizes spectrum occupation prediction and multi-channel slot-
ted wireless network access, reducing inter-network collisions
by 30% and increasing throughput by 10% compared to the
traditional exponentially weighted moving average (EWMA)
algorithm [9].

Another MARL algorithm for power allocation and joint
subcarrier assignment in multi-cell orthogonal frequency-
division multiplexing systems demonstrated 53.6% higher
efficiency than conventional Q-learning. This approach, where
each base station independently calculates resource allocation
and collaborates for global optimization, is crucial for manag-
ing interference in heterogeneous networks with multiple APs
and users sharing the same spectrum [10].

Previous works have limitations in optimizing network
throughput and adaptability in extremely dense and dynamic
scenarios, often showing high computational complexity [11].
Therefore, we propose a decentralized solution that treats
each station as a DRL agent that updates its CW values,
optimizing individual throughputs passed to the AP. The AP
then broadcasts the total throughput value back to the sta-
tions, maximizing overall network performance and providing
a more flexible, adaptable, and robust collision avoidance
solution.

The proposed decentralized solution uses collision proba-
bility as the training metric for DRL agents. It compares the
collision probabilities of the decentralized approach and the
conventional BEB algorithm, showing that the decentralized
method outperforms BEB and better adapts to changing net-
work conditions, making it effective for collision avoidance in
WLANs.

This work analyzes two scenarios: static (fixed number of
nodes) and dynamic (increasing number of nodes). It proposes
using DRL algorithms, specifically DQN and DDPG, with
collision probability as the observation metric to optimize
network performance.

The paper is structured as follows: Section II covers the
theoretical background and methodology, Section III presents
simulation results, and Section IV concludes with future work
directions.
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II. SIMULATION METHODOLOGY

A. Theoretical Background

Reinforcement learning (RL) involves a single agent learn-
ing through interaction with the environment to make decisions
that maximize cumulative rewards [12]. The main goal of RL
algorithms is to find a policy that effectively explores and
exploits the environment to maximize total future rewards.

DRL combines RL with deep neural networks (DNNs)
to handle high-dimensional data and accelerate convergence
[13]. This study focuses on using DQN [14] and DDPG [15]
algorithms to optimize CW, aiming to reduce node collisions
and improve network performance.

A decentralized RL system is a multi-agent RL approach
where multiple self-learning agents operate in a shared en-
vironment [16]. In MARL, agents independently maximize
their rewards using local information without considering other
agents, leading to a competitive learning process [17]. Decen-
tralized MARL offers advantages such as optimal solutions
for channel access, collision avoidance, resource management,
and improved network performance, along with scalability and
robustness. However, it faces challenges like non-stationarity,
high computational complexity, and difficulty in achieving
agent communication and collaboration due to limited local
information and a lack of awareness of other agents’ actions
and rewards [16], [17].

B. Methodology

The proposed approach encompasses a decentralized al-
gorithm that runs on multiple stations simultaneously. Each
station observes the network state independently and selects
appropriate CW values to optimize overall network perfor-
mance. Next, we describe each part of the decentralized
solution.

1) Agent is represented by a DRL algorithm (DQN or
DDPG) to run on multiple stations varying from 5 to
50.

2) Current state is the environment status s, of all stations
associated with the AP. However, it is impossible to get
this information because of the nature of the optimiza-
tion problem. Therefore, we model the problem as a
partially observable Markov decision process (POMDP)
instead of a Markov decision process (MDP). POMDP
assumes the environment’s state cannot be perfectly
observed [18].

3) Observation, O, is the network information based on
the collision probability to observe the overall network’s
status. This information is saved into a buffer of recent
observations. Then, a moving average is calculated,
producing the mean value, µ, and the variance, σ2,
transferred to a two-dimensional vector to train the DRL
agent.

4) Action, a, determines the CW value. As we compare
DRL algorithms with discrete and continuous action
spaces, the actions are integer values between 0 and 6
in the discrete case and real values within the interval
[0, 6] in the continuous case. This interval is selected
so that the action space is within 802.11 standard’s CW

range, which ranges from 15 up to 1023. Therefore, the
CW value for each station can be calculated by applying
CW = ⌊2a+4⌋ − 1.

5) Reward, r, is the normalized network throughput. It
is calculated by dividing the actual throughput by the
expected maximum throughput for each station. Each
station’s agent receives individual rewards, and the cu-
mulative reward to be broadcast to every station is the
sum of these individual rewards, resulting in a real value
within the interval [0, 1].

The collision probability is a good characterization of the
environment state. It is the probability of collision, pcol,
observed by the network. It can also be interpreted as the
probability of transmission failure. It is calculated based on the
number of transmitted, Nt, and correctly received, Nr, frames,
that is

pcol =
Nt −Nr

Nt
. (1)

The collision rate, which approximates the actual collision
probability, becomes more accurate as the number of frames
used for its calculation increases. This rate indicates the
likelihood of a frame not being received due to simultaneous
transmissions from other stations. Calculated during inter-
action periods, these probabilities provide insights into the
performance of the selected CW value.

The proposed solution involves three stages: pre-learning,
learning, and operational. Initially, parameters such as the
number of stations, observation buffers, agent weights, and
interaction periods are defined. During the pre-learning stage,
each station collects data on transmitted and received frames,
calculating observations and filling the observation buffer. The
solution preprocesses this buffer to calculate a moving average
of recent observations, generating mean (µ) and variance (σ2)
values for training the agent. In the learning stage, indicated by
the current time exceeding a set update interval and the training
flag being active, the agent selects CW values based on these
statistics, and the DNNs are updated using samples from the
replay buffer [15], [19]. Exploration of the environment is
facilitated by adding a decreasing noisy factor to actions; in
DQN, this corresponds to the probability of taking a random
action instead of an action predicted by the agent, while
in DDPG, Gaussian noise is added to actions. Still, in the
learning state, throughput is computed, normalized to form a
reward, and broadcast to all stations. This reward, along with
the action and state information, is stored in the experience
replay buffer, and agent weights are updated using a mini-
batch from this buffer [15], [19]. The loss functions used
to train the DQN and DDPG agents are detailed in [15],
[19]. The entire learning process iterates through multiple
episodes and steps, continually refining the CW optimization
(i.e., updating the agents) for each station. The operational
stage begins once the training period elapses, utilizing the
learned actions without further training. The implementation
of this proposed decentralized solution follows the pseudo-
code shown in Algorithm 1, detailing the operation of these
three stages.
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Algorithm 1 DRL-based Decentralized CW Optimization
▷ ### Initialization ###

1: Define the maximum number of stations, WifiNode.
2: Initialize the observation buffer of each station, O(i), with zeroes.
3: Initialize the weights of each agent, θ(i).
4: Get the action function for each station, Aθ(i), which each agent uses to choose

the action according to its current state
5: Initialize the algorithm’s interaction period with the environment, envStepTime
6: Initialize the number episodes, Nepisodes

7: Initialize the number of steps per episode, Nspe

8: Initialize the training stage period, trainingPeriod
9: Set trainingFlag← True to tell the algorithm is in the training stage

10: Initialize the experience replay buffer of each station, E(i), with zeroes.
11: trainingStartTime← currentTime
12: lastUpdate← currentTime
13: Initialize the previous mean value of each station µprev(i)← 0
14: Initialize the previous variance value of each station σ2

prev(i)← 0
15: Set CW(i)← 15, ∀i

16: for e = 1, . . . , Nepisodes do
17: Reset and run the environment, i.e., reset and run the NS-3 simulator
18: for t = 1, . . . , Nspe do
19: for i = 1, . . . , WifiNode do

▷ ### Pre-learning stage ###
20: Nt(i)← get number of transmitted frames of the ith station
21: Nr(i)← get number of received frames of the ith station
22: observation(i)← Nt(i)−Nr(i)

Nt(i)
23: O(i).append(observation(i))

24: if currentT ime ≥ lastUpdate + envStepTime then

▷ ### Learning and operational stages ###
25: µ(i), σ2(i)← preprocess(O(i))
26: a(i)← Aθ(i)(µ(i), σ

2(i), trainingFlag)
27: CW (i)← 2a(i)+4 − 1

28: if trainingF lag == True then
29: NRP (i)← get the number of received packets of the ith station.

30: tput(i)←
NRP (i)

envStepTime

31: Send the throughput of each station to the access point.
32: r ← normalize(tput(i))
33: Broadcast the new reward, r, to all associated stations
34: E(i).append((µ(i), σ2(i), a(i), r, µprev(i), σ2

prev(i)))
35: µprev(i) ← µ(i)

36: σ2
prev(i) ← σ2(i)

37: mb(i)← get random mini-batch from E(i)
38: Update θ(i) based on mb(i)
39: end if

40: lastUpdate← currentTime
41: end if

▷ ### Makes the transition between learning and operational stages ###
42: if currentT ime ≥ trainingStartT ime + trainingPeriod

then
43: trainingF lag ← False
44: end if
45: end for
46: end for
47: end for

III. RESULTS

This section compares the proposed solution’s performance
against the conventional BEB algorithm under static and
dynamic scenarios.

A. Simulation Scenario Description

In the decentralized solution, the stations with RL agents
follow a distributed topology with one AP, as shown in Fig.
1. Each station acts as an autonomous agent, adjusting its
CW value and receiving individual rewards. The cumulative
reward is the total sum of all individual rewards. The stations’
arrangement occurs statically and dynamically. The NS3-gym
and NS-3 (version 3.29) simulators are used to train the agent
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Fig. 1. System model for the decentralized DRL-based CW optimization.

TABLE I
NS-3 ENVIRONMENT CONFIGURATION PARAMETERS.

Configuration Parameter Value
Wi-Fi standard IEEE 802.11ax
Number of APs 1
Number of static stations 5,15, 30 or 50
Number of dynamic stations increases steadily from 5 to 50
Frame aggregation disabled
Packet size 1500 [[bytes]
Max Queue Size 100 [packets]
Frequency 5 [GHZ]
Channel BW 20 [MHz]
Traffic constant bit-rate UDP of 150 [Mbps]
MCS HeMcs (1024-QAM with a 5/6 coding rate)
Guard Interval 800 [ns]
Propagation delay model ConstantSpeedPropagationDelayModel
Propagation loss model MatrixPropagationLossModel

and implement the DRL algorithm using TensorFlow (version
1.14.0) and PyTorch (version 0.4.1) [20]. The simulations
were performed on a desktop with an Intel Xeon E5-1620
v3 processor, 32 GB RAM running Ubuntu 20.04.

Tables I and II summarize the parameters used in NS-3 for
creating the agent’s environment and NS3-gym for training
the DRL agent, respectively. The agent’s parameters, including
learning and reward discount rates, were ideally chosen using
a grid search from previous studies in the literature.

The DQN architecture features a recurrent long short-
term memory (LSTM) layer with 8 cells, followed by two
fully connected hidden layers containing 128 and 64 units,
respectively. The architecture concludes with an output layer
comprising 7 units. ReLU activation functions are applied in
all layers except for the output layer, which utilizes a linear
activation function. In contrast, the DDPG’s Actor architecture
includes an LSTM layer with 2 cells, a hidden layer with 32
units, and an output layer with a single unit. The DDPG’s
Critic architecture is similarly structured, featuring an LSTM
layer with 2 cells, a hidden layer with 64 units, and an output
layer with 1 unit. ReLU activation functions are employed
in all layers of both the Actor and Critic models, except
for the output layer, which again uses a linear activation
function. Both DQN and DDPG leverage the Adam optimizer
for training.

B. Static Scenario

In the static scenario, a fixed number of stations associated
with the AP is kept constant during the experiment execution.
As shown in Figure 2, the comparison of network throughput
as a function of the number of stations highlights the superior
performance of the decentralized DRL algorithms compared to
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TABLE II
NS3-GYM AGENT CONFIGURATION PARAMETERS.

Configuration Parameter Value
DQN’s learning rate 4× 10−4

DDPG’s actor learning rate 4× 10−4

DDPG’s critic learning rate 4× 10−3

Reward discount rate 0.7
Batch size 32 samples
Replay memory size 18000 samples
Size of observation history memory 300 samples
trainingPeriod 840 [s]
envStepTime (i.e., interaction interval) 10 [ms]
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Fig. 2. Network throughput in the static scenario for 5 to 50 stations.

the conventional BEB algorithm. The improvements of DDPG
over BEB are 5.19%, 17.64%, 16.67%, and 27.78% for 5, 15,
30, and 50 stations, respectively. The improvements of DQN
over BEB are 5.19%, 17.21%, 16.27%, and 27.10% for 5,
15, 30, and 50 stations, respectively. The results demonstrate
that DDPG is slightly better than DQN, especially for 15, 30,
and 50 stations. This improved performance can be attributed
to DDPG’s ability to select any real CW value within the
[0, 6] range satisfactorily suitable for tracking the network’s
dynamics [15].

As illustrated in Figure 3, the mean CW value is shown
across 15 episodes with 30 stations in the static scenario. The
mean CW value is obtained individually for each station, Here
we present the mean CW value corresponding uniquely to the
30th station. Furthermore, the results demonstrate that there
is a higher variance on CW in the initial episodes, but as
the training progresses, the variance reduces. This happens
because the number of random actions decreases over time,
and the agent converges to a result and learns correctly. After
the 10th episode, the mean CW value is kept stable around the
same value.
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Fig. 3. Mean CW value for 30 stations in the static scenario.
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Fig. 4. Network throughput in the dynamic scenario for 5 to 50 stations.
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Fig. 5. Mean CW value for 30 stations in the dynamic scenario.

C. Dynamic Scenario

In this scenario, the number of stations grows steadily
during the simulation execution, increasing from 5 to 50. The
higher the number of stations, the higher the collision proba-
bility. This experiment evaluated whether the DRL algorithms
correctly act upon network changes. As presented in Figure
4, it shows that the DRL algorithms effectively enhance the
network’s throughput compared to the BEB algorithm in the
decentralized dynamic scenario. The degree of improvement
in DQN and DDPG compared to BEB was similar. The
improvements are 7.89%, 11.94%, 9.27%, 8.43% over BEB
for 5, 15, 30, and 50 stations, respectively.

As shown in Figure 5, the mean CW value for the dynamic
scenario is depicted as a function of the number of episodes.
As with the static scenario, the CW value remains stable
around the same value after some episodes with these mean
CW values being exclusively related to the 30th station.

Figure 6 illustrates the instantaneous mean Contention Win-
dow (CW) calculated over 50 stations and the number of
stations as a function of simulation time for the decentralized
dynamic scenario, where the number of stations incrementally
increases from 5 to 50 every 1.2 seconds. As the number of
stations increases, the CW values are adjusted accordingly. It is
observable that DQN varies between discrete neighboring CW
values, while the DDPG consistently raises the CW value. This
results in a lower CW for 50 stations, subsequently improving
the throughput.

Figure 7 compares the instantaneous network throughput
in the decentralized dynamic scenario, where the number
of stations progressively increases from 5 to 50. The ele-
vated number of stations modifies the CW value, affecting
the instantaneous network throughput. The BEB’s throughput
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Fig. 6. Mean CW for 5 to 50 stations in the dynamic scenario.
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Fig. 7. Instantaneous network throughput in the dynamic scenario.

decays to approximately 26 Mbps when the number of stations
connected with the AP reaches 50, unlike the decentralized
mode, which yields a throughput of 35.8 Mbps with an
increase of 37.16% over BEB. The proposed DRL algorithms
(with either DQN or DDPG) present an almost constant be-
havior, keeping a high and stable throughput as the number of
stations progressively increases. These findings make the DRL
algorithm apt to address the collision avoidance challenges in
dense wireless networks.

IV. CONCLUSIONS

This work has introduced a transformative decentralized
approach utilizing DRL algorithms, specifically DQN and
DDPG, to optimize the CW parameter and significantly en-
hance network throughput. The simulation results underscore
the superiority of our approach over the traditional BEB
algorithm, achieving an impressive up to 37.16% increase in
network throughput with 50 stations. Both DQN and DDPG al-
gorithms have demonstrated robust performance, proving their
suitability for both static and dynamic network environments.

These findings highlight the potential of DRL algorithms to
revolutionize collision avoidance strategies in WLANs. The
enhanced throughput and stable performance across varying
numbers of stations underscore the practical applicability and
resilience of our approach in real-world scenarios.

Looking ahead, future work could explore the integration
of station cooperation through information sharing, enabling
agents to optimize network-wide rewards more effectively.
Additionally, investigating the application of our DRL-based
decentralized approach in other domains, such as IoT networks
and vehicular ad-hoc networks, could further validate and
extend the impact of our findings. The continued development

and refinement of DRL algorithms for network optimization
promise to drive significant advancements in wireless com-
munication technologies, paving the way for more efficient,
adaptable, and reliable networks.
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