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Abstract— Polarization division multiplexing systems is a 

promising technique, able to double the capacity of next 

generation optical communication systems. However, the most 

common employed algorithms to recover the sources from the 

received data have the drawback of losing sources when 

polarization dependent loss is present. To tackle this problem, we 

propose different approaches based on independent component 

analysis algorithms.  
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I.  INTRODUCTION  

Most deployed high capacity optical communication 
systems are working with up to a hundred wavelengths spaced 
by 50 GHz, working at 10 Gb/s per channel. These systems 
usually present a binary amplitude pulse modulation, direct 
detection receiver, and few, or more likely none, digital signal 
processing to equalize channel impairments [1]. However, such 
modulation format has a poor spectral efficiency, and further 
upgrade in channel bit rate will be restricted in dense 
wavelength division multiplexed (DWDM) systems. To cope 
with constant demand for higher data rates, the next generation 
optical systems, working at 40Gb/s per channel, will need more 
spectrally efficient modulation formats, e.g. PSK and QAM. 
However, the direct detection receivers cannot recover the 
phase encoded information. One possibility is to employ 
differential interferometer receivers, but they are able to 
recover only differential PSK formats. 

Coherent receivers are an attractive choice to detect 
amplitude and phase encoded information in any format. 
Besides, it also recovers the full information of the incoming 
optical signal, which allows a fully equalization of channel 
impairments by Digital Signal Processing (DSP), what is not 
possible with direct or differential detection. The digital 
equalization of channel impairments will be a major 
concerning in the next generation optical systems to overcome 
residual Chromatic Dispersion (CD) and Polarization Mode 
Dispersion (PMD), among other linear impairments.  Coherent 
detection also allows exploring the fiber polarization diversity, 
what has been seen as another promising strategy to increase 
the spectral efficiency of lightwave systems. The electrical 
field of the optical signal can be modulated along two 
orthogonal axes. Encoding different data along each 
polarization, i.e. using Polarization Division Multiplexing 

(PDM), doubles the number of bits transmitted per wavelength. 
A 40GB/s PDM DQPSK transmitter scheme is shown in Fig. 1.  
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Figure 1.  Scheme of a Polarization Division Multiplexed DQPSK modulated 

Optical System. 

The light generated by the laser is firstly split in two rays, 
being each light signal sent into two independent DQPSK 
modulators. Each modulator is driven by two binary electrical 
signals at 10GB/s, one for in-phase and another for quadrature 
information. Then, the optical modulated signals are combined 
through a Polarization Beam Combiner (PBC) along two 
orthogonal polarizations. At the receiver end, the orthogonal 
polarizations are separated through a Polarization Beam 
Splitter (PBS) and each signal is detected by an optical 
coherent receiver, which recovers the four 10GB/s data 
streams. This scheme has the advantage of increasing the 
overall bit rate while keeping all the electrical signals at 
10Gb/s, which allows analog-to-digital conversion with current 
technology and paves the way for digital signal processing 
techniques. Moreover, it also limits the symbol rate at 
10Gbouds/s, improving the system robustness to channel 
impairments [2].  

Along the fiber, the State of Polarization (SOP) of a 
lightwave is usually not preserved, leading to random coupling 
between the two data streams. Hence, the outputs of the PBS 
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are, indeed, a mixture of the transmitted data. To avoid 
interference between polarizations and perform equalization of 
linear impairments, a number of works have been considering 
the application of signal processing techniques to PDM 
systems. In most of these works, source separation and 
equalization are performed at the same time in a MIMO FIR 
structure, which can be adjusted, for instance, by a multi-user 
version of the Constant Modulus Algorithm (CMA), Radius 
Directed Equalization (RDE), or other blind approaches [3,4]. 
After convergence, a Decision Directed (DD) algorithm is 
often employed to refine the obtained solution [5,6]. A main 
limitation of these algorithms comes from the presence of high 
Polarization Dependent Loss (PDL) on the optical link, which 
may lead to a strong correlation between the received data. In 
such a scenario, the above-mentioned algorithms may not be 
able to recover all sources. Moreover, their convergence speed 
is also compromised. 

Recently, methods based on Independent Component 
Analysis (ICA) were applied to perform Blind Source 
Separation (BSS) in presence of PDL, with post equalization of 
linear distortions. ICA-based solutions have stronger separation 
criterion than usually employed algorithms, and has been 
shown that ICA can retrieve the sources even on high PDL, and 
could also track fast changes in the signals state of polarization. 
However, previous works employing ICA on these systems 
considered an instantaneous mixture model [7], which is valid 
only in low dispersion scenarios. In a more general case, the 
received signals are actually convolutive mixtures of the 
sources, which limit the effectiveness of the previous approach. 

In this work we propose the use of ICA-based solutions to 
solve the polarization mixture problem in PDM optical 
communication systems, even in high dispersion scenarios. We 
employ two different ICA algorithms, one for instantaneous 
and another for convolutive mixture models, and compare their 
performance with the multi-user CMA. The source loss 
probability in presence of PDL, and the effectiveness of the 
equalization of CD and PMD, will be evaluated for each 
algorithm.    

II. OPTICAL CHANNEL MODEL 

Chromatic Dispersion is the main source of intersymbolic 
interference when operating at the linear domain. Different 
spectral components of an optical pulse travel with different 
group velocities, causing pulse broadening and intersymbolic 
interference.  CD is a linear operation usually modeled as  
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where D is the dispersion parameter of the fiber, λ is the carrier 
wavelength, c is the speed of light, ω is the angular frequency 
of the signal, and l is the length of the fiber [5].  For a given 
pulse, the amount of dispersion increases linearly with the 
length of fiber, and also increases with the pulse spectral width. 
The dispersion parameter for each polarization can be slightly 
different, what leads to dispersion group delay between 
polarizations when accumulated CD is high enough.   

CD is usually equalized in optical domain, by Dispersion 
Compensation Fibers (DCF), Bragg Grating Filters or even 
interleaving transmission fiber with opposite dispersion 
parameters signs. This optical domain approach has the 
advantage of allowing the equalization of many wavelengths 
multiplexed on the fiber at the same time.  Although this 
technique is very effective to counterbalance high amounts of 
dispersion, a residual distortion remains due to the 
impossibility of exactly compensating all wavelengths – each 
one having a different accumulated dispersion – with a single 
optical equalizer. This residual dispersion may be striking at 
high symbol rates like 10Gbaud/s, so that additional optical or 
digital equalization of the demultiplexed lightwaves becomes 
imperative. 

Polarization Mode Dispersion is another physical 
phenomenon in the fiber that may degrade high bit-rate 
transmissions. As the cross section of an optical fiber is not 
circular, the fiber has a small birefringence, and consequently, 
the light velocity may slightly change depending on its 
polarization.  This phenomenon may cause time broadening by 
generating a Differential Group Delay (DGD) between the two 
parts of the pulse: one aligned along the slow axis and the other 
one along the fast axis.  That results in pulse distortion and 
intersymbolic interference. DGD is also known as first order 
PMD, and can be modeled as 
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where EX and EY are the orthogonally polarized electric fields 
launched on this section of fiber, RX and RY are electric fields 
on the section fiber output, θ is the angle between the state 
polarization of the signals and the fiber principal state of 
polarization, and τ is the DGD parameter [3]. Contrary to CD, 
which has a stationary behavior, PMD changes with time 
following the dynamic state of polarization.  Regardless of that, 
PMD induced broadening is relatively small compared with 
CD effects.  A complete model of PDM includes the effect of 
random coupling between polarizations. This couplings leads 
to a reduction of the overall pulse broadening, since it 
exchange the light traveling on the slow and fast polarization 
axis. As result, a statistical model of PDM leads to a time 
spread that increases with the square root of the fiber length. 

At last, another relevant impairment over PDM systems is 
the Polarization Dependent Loss, present on passive elements 
in the optical link, like connectors, couplers and filters. An 
element with PDL has a stronger attenuation over one 
polarization axis than another. Such element can be modeled in 
a similar form as done with PMD: 
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where γ is the PDL parameter. The PDL, in dB is given by: 
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If an element has a non-zero PDL, the output fields can be 
correlated depending on the angle between the signal SOP and 
the device polarization axis. Due to the non-stationary behavior 
of the state of polarization, PDL effect is time dependent.  The 
impact of PDL is also cumulative, as many components with 
small attenuations may contribute to a large accumulated PDL. 

A full channel model including all the described effects is 
given by: 
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where Hij is a linear time-dependent filter describing the  
conjunct effect of PMD and PDL [5], what leads to a linear 
convolutive mixture model. Even if there is no PMD, the 
mixture can be convolutive for high values of CD, as the 
difference of the dispersion parameter on each polarization 
leads to distinct delays between the received signals. 

III. BLIND SOURCE SEPARATION IN PDM OPTICAL 

SYSTEMS 

The main goal in PDM optical systems is to correctly 
estimate the EX and EY based on the observed signals RX and 
RY, which is the essence of the BSS problem. If CD and PMD 
are low enough, we can model the system by an instantaneous 
mixture matrix, A, in addition to SISO filters describing CD 
and PMD effects.  If that condition is not satisfied, we must 
model the system by a convolutive mixture, composed by a set 
of mixture matrices, each one associated with a different time 
delay. Fig. 2 illustrates both models structures. 

A
h2(z)

EX

h1(z)

EY

RX

RY

 

(a) 

EX

EY

RX

RY

A0 A1

z-1

z-1

z-1

z-1

z-1

z-1

An

Σ

 

(b) 

Figure 2.  Model of instantaneous (a) and convolutive (b) mixture systems. 

In PDM optical systems, channel equalization is usually 
performed by a 2x2 MIMO FIR structure, suitable to deal with 
both mixture models. In the case of DQPSK modulation, a 
multi-user CMA is commonly used to adjust the equalizer. The 
algorithm cost function for the i-th equalizer output is given by: 
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where yi  is the i-th equalizer output, γ is a decorrelation term 
weight, and r12 is the cross-correlation between the two 
equalizer outputs [8]. The algorithm penalizes this cross-
correlation, trying to avoid convergence to the same solution. 
The addition of this decorrelation term, however, usually 
makes the convergence slower and increases the steady-state 
mean square error. Moreover, in the presence of high PDL, the 
effectiveness of such algorithms is compromised, due to the 
strong cross-correlation of the incoming signals, leading to a 
higher probability of source loss. 

Another possibility is to employ algorithms based on ICA. 
The essential idea of this approach consists in exploring the 
hypothesis that the sources are mutually independent signals, 
which is a stronger separation criterion that decorrelation. ICA 
has been successfully used in many application domains, 
including in optical communication [7].  

Essentially, to perform ICA on the observed vector x 
corresponds to finding a matrix W for which the components 
of the separating system outputs y, given by 

 

Wxy  , (7) 

 

are as mutually independent as possible [9]. It can be shown 
that, if the observed signals correspond to 

 
Asx   , (8) 

 

where s denote a vector of mutually independent components 
(the sources) and A denote an invertible mixing matrix, the 
solution provided by ICA will recover the sources up to 
permutation and scaling ambiguities [10]. The results obtained 
for instantaneous mixing systems can also be extended to 
convolutive systems [11]. 

There are many well-studied algorithms based on ICA able 
to deal with instantaneous mixtures, following different 
independence criteria to find W [9], and some of these 
algorithms were also extended to the convolutive case [13].  
Nevertheless, algorithms for the convolutive scenario present a 
much higher computational complexity than the instantaneous 
ICA. 

We performed a set of simulations in order to compare the 
conventional MU-CMA [8], an instantaneous FastICA with 
symmetrical orthogonalization, a well known ICA-based 
algorithm [9], and a time-domain convolutive version of 
FastICA, C-FICA algorithm [13]. The ICA-based methods also 



employ posterior equalization by a standard CMA [13] over the 
separated signals.  

IV. SIMULATIONS AND RESULTS 

The optical system is simulated using the 
VPItransmissionMaker

TM
 software. We consider a PDM 

system with a single wavelength at 10 Gbaud/s, in a DQPSK 
modulation format in each polarization, with a total of 40 
Gbit/s. Two optical coherent receivers are employed, and no 
laser phase noise is present at the transmitter neither the 
receiver local oscillator. To avoid non-linearity, the transmitted 
power is set to –1dBm. The power at the receiver is set to –
10dBm with a noiseless optical amplifier. The optical link was 
composed of a 100km optical fiber with variable CD and PMD, 
and a PLD emulator. For each condition of scenario, at least 
100 simulations are performed with 64000 symbols sent on 
each one. The FastICA algorithm uses a window length of 50 
bits with no overlap. C-FICA algorithm uses a kurtosis 
optimization criterion, with 20 separating matrices. For both 
ICA-based methods a posterior equalization by a CMA 
algorithm with a step-size of 0.001 is performed. The 
conventional structure is based on Multi-User CMA proposed 
in [13] with a step-size of 0.01.  

Fig. 3 shows the probability of source loss for all 
equalization schemes as a function of PDL, when the CD is 
400 ps/nm and no PMD. FastICA exhibits the better 
performance, successfully separating the incoming signals with 
no source loss even in a high PDL scenario, while MU-CMA 
capability to recover all sources decreases strongly with PDL, 
reaching 40% of source loss with 12 dB PDL. The C-FICA is 
not stable as instantaneous FastICA, falling to recover the 
transmitted signals in 10% of the simulations with 12 dB PDL. 
This behavior is similar to the one observed in dispersion-free 
simulations.   

Despite the better performance in the terms of source loss, 
the FastICA presents the worst mean square error of the 
recovered signals for high CD or PMD induced dispersion. 
This worst performance can be explained by the fact that, for 
these scenarios, the convolutive character of the mixing process 
is more pronounced.  

Fig. 4 presents the mean square error for all methods in 
function of accumulated chromatic dispersion. Although 
FastICA performs better for low Chromatic Dispersion, for CD 
higher than 300 ps/nm, the C-FICA performs better than MU-
CMA and FastICA. It is worth mentioning that such amount of 
accumulated CD is fairly higher than typical values of residual 
dispersion in optical compensated systems, so a simpler ICA-
based structure could be employed with better results in many 
practical systems. 
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Figure 3.  Probability of source loss versus PDL in a 400ps/nm Chromatic 

Dispersion scenario. 
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Figure 4.  Mean Square Error versus accumulated CD for both methods. 

Figure 5 shows a similar result in presence of PMD for a 
CD free simulation. While FastICA performs better for PMD 
bellow 30 picoseconds, it is overcome by C-FICA for further 
dispersions. Again, FastICA is still applicable in some systems 
with limited PMD, but this constraint is stronger than the one 
imposed by CD. It’s interesting to note that the C-FICA 
performance gets better as PMD increases in the 0-30 
picoseconds interval. This is possibly caused by the small 
correlation induced by PMD, which makes the signal more 
suitable for C-FICA algorithm. 

The simulations show that the ICA-based solutions are 
much more resistant to PDL than MU-CMA, exhibiting less, or 
even none, source loss during signal recovery. The equalization 
performance of the ICA algorithms is also better than MU-
CMA, with instantaneous FastICA shown better results at low 
CD and PMD, and C-FICA at higher dispersions. 
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Figure 5.  Mean Square Error versus accumulated PMD for both methods. 

It is worth to note that these results were obtained if no 
phase noise from lasers, neither ASE noise from optical 
amplifier. Since both polarizations have the same phase-noise, 
it will probably have a minor effect over ICA performance. 
The ASE noise impact, in other hand, needs to be further 
investigated, and could limit the ICA effectiveness.  

 

V. CONCLUSIONS 

In this work we successfully employed a convolutive ICA 
algorithm to perform blind source separation in PDM optical 
systems, recovering the transmitted data even at high 
dispersion scenarios.    We also evaluated the performance of 
convolutive and instantaneous ICA in presence of CD and 
PMD, and show the robustness of these algorithms to PDL 
induced source loss.  Optimized convolutive ICA algorithms 
may lead to better results, in special, keeping the zero source 
loss probability shown by FastICA, and also to a reduced 
computational complexity.  
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