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Abstract— One of the main problems of fingerprinting (FP)-
based radiolocalization systems is the heterogeneity of mobile
devices. This problem usually causes variations in the collected
radio frequency (RF) signals due to a set of heterogeneity
elements, such as RF chipsets, antennas, hardware drivers,
and operating systems, resulting in larger location prediction
errors. This work proposes a combined calibration method to
correct discrepancies in the RF signal levels collected, helping to
reduce the prediction errors of the FP-based localization systems.
The combined calibration method presented better performance
than its component methods in all cases of the generalized
and homogeneous scenarios and partially in the heterogeneous
scenarios. The results showed that, in generalized scenarios,
the FP-based localization system using the combined calibration
method reduced the average prediction error in the range of 7
to 22%.

Keywords— Fingerprinting, indoor localization, machine learn-
ing, free-calibration methods.

I. INTRODUCTION

The evolution of wireless technology, with its variety of
mobile devices, has expanded the possibilities of localization
techniques for wireless networks [1]. In this context, global
navigation satellite systems (GNSS), such as global position-
ing systems [2] and Galileo [3], play a fundamental role
in consolidating localization techniques for outdoor environ-
ments. However, concerning indoor environments, the GNSS
signal is often attenuated or becomes unavailable due to physi-
cal obstacles that can block or reflect the radio frequency (RF)
signals. Given that, radiolocalization based on fingerprinting
(FP), a localization method based on the similarity between
RF signal levels, is a cost-effective solution to estimate the
user’s positioning [4], [5].

One of the main obstacles faced by the FP-based localiza-
tion technique is device heterogeneity [6]–[9]. This problem
occurs due to variations in RF signal levels collected from
different wireless devices, even when they are positioned in
the same physical location. These variations are caused by
a set of heterogeneous elements in mobile devices, such as
different RF chipsets, receiver antennas with distinct sensi-
tivities, hardware drivers, and operating systems, resulting
in larger location prediction errors [10]. In the face of this
challenge, calibration methods are employed with the aim of
normalizing or correcting discrepancies of the variations in
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RF signal levels, which, in turn, indirectly helps to reduce
the distance prediction errors of the localization systems [11].
In this way, calibration methods contribute to a more reliable
location, seeking to adjust the collected data considering the
individual particularities of each wireless device.

Considering the device heterogeneity problem and the use
of machine learning (ML) models to implement a localization
solution, we can define some scenarios in the context of
the supervised ML algorithms. A heterogeneous scenario is
defined when the ML model is trained with data from one
type of device, and the testing data is acquired from different
wireless devices in terms of manufacturers, brands, or models.
When the testing set is formed by data obtained from exactly
the same type of device used to generate the training data,
we call this scenario a homogeneous one. Finally, when we
have testing data extracted from several devices, including
the one that was used to compose the training set, this is a
generalized or joint scenario. Calibration methods are usually
used in generalized and heterogeneous scenarios, presenting
good results, such as, for example, the received strength signal
certainty (RSC) method [11]. On the other hand, there are
calibration methods that are not efficient in heterogeneous
scenarios, but promote benefits when applied to homogeneous
scenarios, such as the weight-received strength signal (W-
RSS) method [10]. Finally, it is important to highlight that,
in homogeneous scenarios, the use of calibration does not
always result in performance improvements, thus harming a
certain number of users.

In view of the above, the motivation for proposing the
new calibration method is based on the idea of combining
the RSC method, which demonstrated good performance in
heterogeneous scenarios, with the W-RSS one, which pre-
sented satisfactory results in homogeneous scenarios. Thus,
the main objective of the proposal is to mitigate discrepancies
in the RF signal levels collected from different mobile devices,
considering different scenarios.

The rest of the paper is organized as follows. Section II
presents a brief description of the proposed calibration method.
In Section III, numerical results are accomplished, and the
proposed method is compared to RSC and W-RSS calibration
approaches. Finally, conclusions are drawn in Section IV.

II. PROPOSAL OF CALIBRATION METHOD

The proposed calibration method consists of the integration
of the RSC and W-RSS methods and will be denoted by



XLII BRAZILIAN SYMPOSIUM ON TELECOMMUNICATIONS AND SIGNAL PROCESSING - SBrT 2024, OCTOBER 01–04, 2024, BELÉM, PA

Fig. 1. Diagram of the fingerprint-based radiolocalization technique consid-
ering the insertion of the RSC/W-RSS calibration method.

RSC/W-RSS. The main idea of the proposal is to investigate
the benefits that the joint use of the RSC and W-RSS methods
provides to the FP technique, in heterogeneous, homoge-
neous, and generalized scenarios. When applied alone, the
RSC method increases accuracy in heterogeneous scenarios,
however diminishes it in homogeneous ones. On the other side,
the W-RSS method also raises accuracy in heterogeneous sce-
narios and simultaneously maintains or improves accuracy in
homogeneous ones. It is worth highlighting that the RSC, W-
RSS, and RSC/W-RSS calibration methods were used together
with the ML models k-nearest neighbors (k-NN) [12], support
vector regression (SVR) [13], and random forest (RnF) [14]
to compose the localization technique.

Fig. 1 illustrates the architecture of an RF fingerprinting-
based localization technique, considering the insertion of the
calibration method, that can be divided into two stages: offline
and online [4]. In the offline stage, the radio map of the region
of interest is produced by merging RF measurements and a
grid map 1 composed of regular squares (also called cells)
that cover all the location areas. The main objective of the
offline stage is to establish, for each grid map cell, a vector
that uniquely identifies it. These vectors are named reference
fingerprints.

In this work, we will denote by zj the reference fingerprint
of the received RF signal at the center of the j-th grid cell on
the grid map, whose Cartesian coordinates are (xj , yj), being
xj and yj expressed in meters. Thus, the reference fingerprint
is given by

zj = [rj ; (xj , yj)] , (1)

where rj = [rij ], i = 1, . . . ,m, represents the vector of RF
signal levels, obtained from the access points (APs) existing
in the coverage region, that is composed of n grid cells. Each
component rij of rj means a signal level measurement from
the i-th AP at the j-th grid cell, while m expresses the number
of APs in the localization area.

1Irregular grid maps can also be used in RF fingerprinting-based localiza-
tion. Nevertheless, such grids are not within the scope of this work.

After building the radio map, the next step is to calibrate
the RF signal measurements collected in the field. In this
context, the block “RSC" processes the set of vectors {rj}nj=1

transforming them into {qj}nj=1, such that each component qij
of the vector qj is given by

qij =
rij∑m

k=1 r
k
j

. (2)

At this point, it is worth noting that not all grid map cells
may be accessible for collecting measurements2. A possible
solution to this problem is the use of ML algorithms, such
as k-NN, neural networks, RnF, and SVR, to predict the
values associated with inaccessible cells, allowing correlation
database (CDB) to become complete [15]. Finally, all refer-
ence fingerprints (collected, predicted and calibrated) along
the coverage region are stored in the CDB, which in turn is
contained on a localization server. This location server acts as a
central management and coordination point, receiving location
data from mobile devices and providing responses to location
requests.

The second stage of the fingerprint-based localization tech-
nique is the online phase, whose objective is to estimate
the position of the mobile device to be located. To do this,
initially, only the RF signal levels of the mobile device are
collected from all the APs of the coverage region to compose
the so-called target fingerprint vector, denoted by rtd. Similar
to rj , the vector rtd is also processed by the block ’RSC’,
represented by (2), to derive the vector qtd. In this way, the
RSC method creates a new signal level tuple by refining the
original signal level data, aiming to reduce the uncertainty
associated with the measurements [11].

Subsequently, the W-RSS method uses the vectors {qj}nj=1

and qtd as input parameters, generating in its output the set
of vectors {pj}nj=1, the vector ptd and the vector of weighted
signal levels between pj and ptd, denoted by w

(td)
j . Each

vector pj is expressed by

pj = [(q1j ; I(q
1
j )), . . . , (q

i
j ; I(q

i
j)), . . . , (q

m
j ; I(qmj ))] , (3)

where qij is the certainty value vector of the received signal
levels defined by (2), and I(qij) represents the index of qij after
the descending ordering of the components of pj . The vector
ptd is obtained in a similar way as pj , but assuming qtd as
input. Finally, the vector w(td)

j is such that

w
(td)
j = [w

(td)
1,j , . . . , w

(td)
i,j , . . . , w

(td)
m,j ], (4)

where w
(td)
i,j is given by

w
(td)
i,j = 1− |I(ri,j)− I(r

(td)
i )|

max(I(ri,j), I(r
(td)
i ))

, 1 ≤ i ≤ m. (5)

Once the vector w(td)
j is obtained, a matching algorithm is

applied using w
(td)
j in the calculation of Euclidean distances

2This is a very common situation in outdoor environments, in which some
regions are, for example, private properties.
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between p(td) and each of the vectors pj , such that

d(pj ,p
(td),w

(td)
j ) =

√√√√ m∑
i=1

w
(td)
i,j (ri,j − r

(td)
i )2 . (6)

After all, the purpose of the matching algorithm is to find a
reference fingerprint in CDB that presents the largest similarity
with the fingerprint target [4]. The Cartesian coordinates of the
selected reference fingerprint are then assigned to the searched
mobile target.

III. RESULTS

The database used in this work is made up of Bluetooth
signal level measurements collected in an area of approxi-
mately 176 m2. These Bluetooth signal level measurements
were obtained from three different mobile devices, identified
as SM1 (Samsung Galaxy A5 2017), SM2 (BQ Aquaris X5
plus), and SM3 (Samsung Galaxy S6) [16]. In the training
stage, 560 measurements were used from a single mobile
device to build the CDB. In the testing stage, 420 observation
points were employed from three different mobile devices,
with a third (140 samples) corresponding to the device used in
the training stage. The remaining 280 samples were extracted
from the other two devices, with 140 samples from each one.

For the three ML algorithms, a parameter adjustment step
was carried out using the grid search method, aiming to
optimize the results. The K-fold cross-validation method was
also used to guarantee the generalization capacity of the ML
algorithm in the localization technique. Cross-validation aims
to reduce the impact of randomness when splitting training
and testing data. At each iteration of the K-fold technique,
the calculation of the average prediction error for the j-th
fold of validation is performed using the Euclidean distance
dj [(x, y), (x̂, ŷ)], such that

dj [(x, y), (x̂, ŷ)] =
1

n

√√√√ n∑
i=1

(xi − x̂i)2 + (yi − ŷi)2 , (7)

where n represents the total number of samples in the j-th
validation fold, while (xi, yi) and (x̂i, ŷi) correspond, respec-
tively, to the Cartesian coordinates of the real and predicted
positions of the i-th sample. After the end of the iterations, the
distance prediction error is obtained through the mean value
of the Euclidean distances, denoted by ϵ̄, obtained in all K
folds, such that

ϵ̄ =
1

K

K∑
j=1

dj . (8)

We adopted three metrics to evaluate the performance of
the localization systems presented in this work. The first one
is the average distance error prediction of all samples present
in the test set and defined by Eq. (8). The second metric is the
precision of the technique, given by the standard deviation of
the distance error prediction. Later, the third metric is based
on the time required for the localization technique to perform
calibration, training of the ML algorithm, and prediction of
the coordinates of the test samples.

TABLE I
AVERAGE DISTANCE PREDICTION ERROR (ϵ̄) AND PRECISION (σ) OF THE

FP-BASED RADIOLOCALIZATION TECHNIQUE WITH AND WITHOUT THE

USE OF FREE-CALIBRATION METHODS. TRAINING DATA: MOBILE DEVICE

SM1 . CALIBRATION METHODS: RSC, W-RSS, RSC/W-RSS, AND NC
(NO CALIBRATION).

ML Calib. Method Metric Joint SM1 SM2 SM3

RSC ϵ̄ 3.25 m 3.44 m 3.14 m 3.17 m
σ 1.91 m 2.16 m 1.74 m 1.82 m

k-NN W-RSS ϵ̄ 3.29 m 2.42 m 3.82 m 3.61 m
σ 1.96 m 1.29 m 2.14 m 2.03 m

RSC/W-RSS ϵ̄ 2.91 m 1.75 m 3.48 m 3.48 m
σ 1.96 m 1.17 m 2.02 m 2.02 m

NC ϵ̄ 4.40 m 3.34 m 5.17 m 4.65 m
σ 2.70 m 2.22 m 2.86 m 2.65 m

RSC ϵ̄ 3.04 m 3.47 m 3.04 m 2.63 m
σ 1.89 m 2.18 m 1.74 m 1.63 m

SVR W-RSS ϵ̄ 3.28 m 2.54 m 3.83 m 3.44 m
σ 1.91 m 1.32 m 2.27 m 1.77 m

RSC/W-RSS ϵ̄ 2.38 m 1.74 m 2.86 m 2.51 m
σ 1.69 m 1.21 m 1.94 m 1.63 m

NC ϵ̄ 5.12 m 3.68 m 6.35 m 5.27 m
σ 3.03 m 2.45 m 2.97 m 3.02 m

RSC ϵ̄ 2.37 m 3.15 m 2.19 m 1.80 m
σ 1.67 m 2.20 m 1.32 m 0.95 m

RnF W-RSS ϵ̄ 3.17 m 2.65 m 3.78 m 3.04 m
σ 2.01 m 1.25 m 2.45 m 1.95 m

RSC/W-RSS ϵ̄ 2.20 m 2.56 m 2.17 m 1.88 m
σ 1.40 m 1.65 m 1.35 m 1.06 m

NC ϵ̄ 5,60 m 3.49 m 7.33 m 5.90 m
σ 3.82 m 2.72 m 3.77 m 3.84 m

Tab. I illustrates the average distance error prediction and
precision of the FP-based radiolocalization technique consid-
ering the use of free-calibration methods and no calibration
(NC). The experiment was performed assuming a training
database composed of RF measurements from the device SM1
3. The test set was built with data collected in four different
scenarios. The first one contemplates measurements from all
three mobile devices (SM1, SM2, and SM3) and is represented
by the column “Joint”. The other three scenarios only consider
individual data from each mobile device and are identified
by the columns “SM1”, “SM2”, and “SM3”. With this in
mind, the columns “SM2” and “SM3” illustrate heterogeneous
scenarios, while the column “SM1” represents a homogeneous
one. Finally, the column “Joint” depicts a generalized scenario.

As can be seen in Tab. I, the RSC/W-RSS method led to
a reduction in the average prediction error in the range of 7
to 22%, for all ML algorithms, when compared to the RSC
method in the joint scenario, that is, when the testing set was
composed of data from all mobile devices considered. Con-
cerning the homogeneous scenario, the RSC/W-RSS method
presented reductions of 27.7%, 31.5%, and 3.4%, considering
the k-NN, SVR, and RnF, respectively, in relation to the W-

3Similar results were acquired for training sets built from the mobile devices
SM2 and SM3. However, due to lack of space, they will be omitted from this
work.
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Fig. 2. Cumulative distribution function of the average distance prediction
error for training data extracted from the mobile device SM1, considering the
use of free calibration (RSC/W-RSS, RSC, and W-RSS) and no calibration
(NC). ML algorithms: (a) k-NN. (b) SVR. (c) RnF.

RSS calibration. Finally, in the heterogeneous scenario, the
RSC/W-RSS method outperformed the RSC one in half of
the cases. Nonetheless, even in cases where the prediction
error of the RSC/W-RSS method increased relative to the RSC
one, the magnitude of its increase did not exceed 10.8%. In
spite of that, the RSC/W-RSS method showed smaller distance
prediction errors compared to the NC case for all scenarios
considered in this work. Therefore, the RSC/W-RSS method
is a viable calibration option since the overall performance
of the system in the joint scenario was not damaged, even
with an increase in the distance prediction error in specific
heterogeneous cases. Last but not least, it is noteworthy that
the precision of the localization techniques was improved with
the use of calibration methods.

A typical way to evaluate the precision of localization

TABLE II
NORMALIZED VALUES OF THE TOTAL RUNTIME OF THE LOCALIZATION

TECHNIQUE (CALIBRATION, TRAINING, AND TESTING). CALIBRATION

METHODS: RSC, W-RSS, RSC/W-RSS, AND NO CALIBRATION (NC).

ML Algorithm NC RSC W-RSS RSC/W-RSS

k-NN 2.4 2.8 4.9 7.3

SVR 1.0 1.6 3.1 6.2

RnF 1.9 2.1 3.5 3.9

techniques is through the cumulative distribution function
(CDF) of the distance prediction error [17]. The CDF is the
probability that the localization error takes on a value less
than or equal to x meters. Figs. 2(a), 2(b), and 2(c) illustrate
the CDFs of the distance prediction error of localization
techniques for k-NN, SVR, and RnF algorithms, respectively,
considering all the calibration methods as well as the NC
system. The steeper the curve, the better the precision of the
localization system. So we can see that the precision of the
calibrated systems is superior to the precision of the NC one.
Furthermore, the performance of the system depends directly
on the ML algorithm used. For example, as can be seen
in Figs. 2(a), 2(b), and 2(c), the curves of the RSC/W-RSS
calibration using SVR and RnF algorithms are steeper than the
k-NN case. At the same time, the use of the RnF algorithm
makes the performance of the RSC method very close to the
RSC/W-RSS one.

Tab. II indicates the normalized values of the total runtime
of the localization technique, including calibration, training,
and testing steps. The SVR-based localization technique using
no calibration was adopted as a benchmark. As expected,
the runtime of the RSC/W-RSS-based localization method in-
creased compared to the other isolated calibration methods and
the system with no calibration. Considering the homogeneous
scenario and depending on the ML model, the total runtime
of the RSC/W-RSS method was 1.1x to 2x larger than the
entire runtime of the W-RSS localization technique. For the
generalized scenario, the increasing of the runtime was 1.8x to
3.8x larger than the runtime of the RSC-based method. In spite
of that, it is important to point out, as previously mentioned,
that the proposed calibration method promoted a performance
gain in the range of 7 to 22% for generalized scenarios and 3
to 31% for homogeneous cases.

IV. CONCLUSIONS

In this work, a combined calibration method was pro-
posed to investigate the benefits that the joint use of the re-
ceived strength signal certainty (RSC) and the weight-received
strength signal (W-RSS) methods provides to the performance
of fingerprinting (FP)-based radiolocalization systems in a
variety of mobile device scenarios. For this, a Bluetooth
database containing RF signals from three different mobile
devices was used for analysis. To compose the localization
technique, we consider three machine learning (ML) models:
k-nearest neighbors (k-NN), support vector regression (SVR),
and random forest (RnF). Finally, experiments were executed
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considering heterogeneous, homogeneous, and generalized
mobile device scenarios.

The FP-based localization system using the proposed cali-
bration method presented better results than the system with
no calibration in all scenarios investigated. In heterogeneous
scenarios, the results indicated that the RSC/W-RSS method
outperformed the RSC method in half of the cases analyzed.
Considering the situations in which the RSC/W-RSS method
failed to overcome the RSC one, the increase of location
prediction error did not exceed 10.8%. In the homogeneous
scenario, the combined method outperformed the W-RSS
one in all cases. Finally, with regard to global performance
(generalized scenario), the RSC/W-RSS method managed to
reduce the average prediction error in the range of 7 to 22%.
This decreasing occurred due to the better performance in the
homogeneous scenario, despite the increasing of prediction er-
ror in specific heterogeneous scenarios. In spite of the increase
in processing runtime, the proposed calibration method proved
to be a good alternative, depending on the ML model used,
something that needs to be further investigated in search of
new solutions to the problem of device heterogeneity.
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