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Abstract— The increasing residential demand for electricity
has a direct effect on the balance between human activities
and the environment. Technological solutions like the Home
Energy Management System (HEMS) are essential for sustainable
energy consumption. This paper proposes novel approaches
to load recognition in HEMS, which main contributions are
enhanced performance through the application of Neighborhood
Component Analysis (NCA) jointly with (i) the optimized Support
Vector Machine (SVM) achieving 96.60% accuracy, 96.49% F1,
and 0.9404 Kappa Index, respectively; (ii) the optimized k-
nearest Neighbors (k-NN) achieving 95.89% accuracy, 95.87%
F1, and 0.9281 Kappa Index, respectively; (iii) the optimized
Extreme Gradient Boosting (XGBoost) achieving 96.03% accu-
racy, 95.81% F1, and 0.9302 Kappa Index, respectively; and (iv)
improved results for training and inference times.

Keywords— Neighborhood Component Analysis, NCA, Ma-
chine learning, HEMS, Load Recognition.

I. INTRODUCTION

It is an undeniable fact that the rising electricity demand
represents a global challenge. According to [1], the residen-
tial sector stands out as a significant consumer of energy,
directly impacting the balance between human activities and
environmental sustainability. In this sense, researchers have
developed technologies to reduce electricity expenditure via
efficient energy management. Consequently, solutions such as
the Home Energy Management System (HEMS) are essential
for sustainable energy consumption.

As per [2], HEMS can individually monitor the energy us-
age of household appliances. This system also can send spend-
ing alerts to the end user, identify device malfunctions, and
provide consumption reports. Furthermore, a modern HEMS
includes additional functions such as load disaggregation [3]
and load recognition [4]. According to [5], load recognition
is the task of determining the type of appliance in operation.
Furthermore, load recognition improves load disaggregation
techniques by boosting the precise identification of individual
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appliances after the disaggregation process. As reported by [6],
load recognition also plays a crucial function in creating appli-
ance databases by interpreting electrical signals and refining
the process. Here, it is relevant to mention that the motivation
of the present work is to enhance the load recognition process.

There are several strategies for load recognition in the lit-
erature. However, state-of-the-art approaches combine feature
extraction techniques with Machine Learning (ML) models
for this task. In [7], the authors use the Gramian Angular
Difference Field (GADF) in the feature extraction stage and
apply a Convolutional Neural Network (CNN) to identify
household appliances, achieving 83.33% accuracy. The ref-
erence [8] extracts the patterns with Stockwell transform and
employs Vector Projection Classification (VPC) to recognize
devices, reaching 90.00% accuracy. The method presented
by reference [9] performs 95.40% accuracy using operating
patterns of equipment and Support Vector Machine (SVM) for
the load recognition task. However, there are some unexplored
gaps in the literature, such as methods that employ feature
extraction techniques to improve separability between classes
and appropriate ML models, able to enhance performance.

This article is an extension of the work [4], where we
advanced the state-of-the-art load recognition approaches by
applying Neighborhood Component Analysis (NCA), jointly
with the Support Vector Machine (SVM), k-Nearest Neighbors
(k-NN), and Extreme Gradient Boosting (XGBoost) models.
This work presents the main contributions: (i) the first applica-
tion of the NCA technique with the optimized SVM for load
recognition, outperforming the reference work [4], achieving
superior values of accuracy, F1, and K.I. – 96.60%, 96.49%,
and 0.9404, respectively; (ii) the pioneering combination of
the NCA and optimized k-NN in a load recognition task,
also surpassing the performance of the work [4], reaching
higher values of accuracy, F1, and K.I. – 95.89%, 95.87%,
and 0.9281, respectively; (iii) the first use of the NCA with
the optimized XGBoost for load recognition, winning the
work [10], yielding higher values of accuracy, F1, and K.I. –
96.03%, 95.81%, and 0.9302, respectively; and (iv) enhanced
overall performance for training and inference times.

It is relevant to mention that the obtained values for the
evaluation metrics are higher than the previously cited works.
In addition, our proposed approaches, NCA with optimmized
SVM and NCA with optimmized XGBoost, have faster train-
ing times when compared to competing approaches. In this
case, NCA with optimmized XGBoost is approximately 8
times faster than its rivals. For the inference time, NCA with
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optimmized XGBoost is about 310 times faster than its ad-
versaries. Finally, this work is part of a research project titled
“Open Middleware and Energy Management System for the
Home of the Future.” It involves collaborative efforts among
the University of Campinas, the Eldorado Research Institute,
and the Brazilian energy provider Companhia Paranaense de
Energia (COPEL).

The remainder of the paper is organized as follows: Section
II presents the proposed approach for load recognition. Section
III presents the performance metrics. Section IV discusses the
results. Section V outlines the main conclusions.

II. PROPOSED SYSTEM FOR ENHANCING LOAD
RECOGNITION

Figure 1 illustrates a typical HEMS system with smart
outlets and a controller. The smart outlets can collect several
data, such as the active and reactive powers, power factor,
voltage, and current of household appliances. This information
is sent to the controller via communication protocols like Wi-
SUN, Wi-Fi, or Bluetooth. A modern HEMS can send energy
consumption alerts to the client. Furthermore, a HEMS with
ML algorithms can process the data locally or send it to the
cloud. Then, after reading the data, the load recognition system
starts to work.

...

Controller

Smart Outlet

Fig. 1. Typical Home Energy Management System (adapted from [6]).

Figure 2 illustrates a short flowchart of the proposed load
recognition system using the active power feeds the data pro-
cessing block. At this point, the system detects the moments
of activity of household appliances using the ON/OFF state
detection described in [11]. Although event detection is not
the focus of this manuscript, such event detection uses level
1 detail coefficients from the Wavelet Transform, as per [11].
After detection, the system transforms the selected segments
into images and rearranges the pixels, respectively, according
to [4]. As per reference [4], we transform all the rows of
the image into a column vector x of size J . Each vector
x represents an image. Then, for I-generated images, this
process generates a set of x vectors. At the end of the data
processing block, we have a dataset represented by the matrix
XJ×I , which we name dataset X. In the sequel, for the feature
extraction, we partition X into training set X(train) and test set
X(test).

For the next block in Figure 2, we employ NCA as per
Algorithm 1 in the feature extraction methodology. At this

stage, the algorithm requires baseline conditions such as the
initial number of components and the decision threshold. There
are no restrictions regarding the choice of a value for the initial
number of components, as Algorithm 1 employs an optimized
search to define the optimal number of components. For the
threshold (ξ), we adopted the suggestions as per reference
[4]. It is relevant to mention that the system obtains the
optimal number of components by comparing the Cumulative
Explained Variance (CEV) for the k-th component with ξ.
Once done, Algorithm 1 generates the transformed data with
reduced dimensionality, X(r)

(train,NCA) and X
(r)
(test,NCA).

Active Power
Readings Data processing Algorithm 1

Algorithm 3 Algorithm 4Algorithm 2

Type of
Appliance

Type of
Appliance

Type of
Appliance

Fig. 2. Summary of the Proposed Load Recognition System.

Algorithm 1 Feature extraction using neighborhood compo-
nent analysis and cumulative explained variance.
Input: X(train) training data and the X(test) test data, initial

number of components (η), threshold (ξ)
Output: training set X(r)

(train,NCA) and testing set X(r)
(test,NCA)

1: first method:
Train the NCA with X(train), with η initial components
and find the transformed data X

(η)
(train,NCA)

2: second method:
Estimate the covariance matrix C from the
X

(η)
(train,NCA), compute the eigenvalues λi via

C = Λ diag(λ1, λ2, · · ·, λη)Λ
−1, and order the

eigenvalues in descending sequence. Here, Λ is the
eigenvectors matrix and diag refers to the diagonal
matrix with the eigenvalues.

3: third method:
Obtain the optimized number r of components via CEV:

Create variable r and assign zero value
Compute CEVk =

∑k
j=1

λj∑η
i=1 λi

if CEVk ≥ ξ
r ← number of k-th component

end if
4: fourth method:

Re-train the NCA with X(train) using only r components.
Next, apply NCA to generate transformed data X

(r)
(train,NCA)

and X
(r)
(test,NCA).

return X
(r)
(train,NCA) and X

(r)
(test,NCA)

For the subsequent stage, as shown in Figure 2, our ap-
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proach proposes three different algorithms for enhancing the
classifiers. In this case, algorithms 2, 3 and 4 are related
to the load identification as per SVM, k-NN, and XGBoost
models, respectively. However, it is necessary to present the
key parameters of these models before describing the proposed
algorithms.

SVM is a flexible ML architecture whose outstanding
feature is its ability to handle non-linearly separable data.
In our context, the hyperparameter C is a regularization
hyperparameter that balances the creation of a well-defined
decision boundary to separate the classes and the classification
error minimization during training. The hyperparameter γ
determines the extent of the kernel function’s influence [12].
Our system finds the optimal values of C and γ through
hyperparameter search based on Grid Search with K-Fold
Cross-Validation. Considering such parameters, Algorithm 2
presents an approach to identify the type of appliance in
operation via the optimized SVM.

Algorithm 2 Load identification using the optimized SVM
Input: Possible values for the hyperparameter C

(C1, C2, · · ·, Cn), possible values for the hyperparameter
γ (γ1, γ2, · · ·, γn), X

(r)
(train,NCA), X

(r)
(test,NCA), number of

folds (K)
Output: Type of Appliance

1: first method:
Load the possible values for both hyperparameters:
C1, C2, · · ·, Cn and γ1, γ2, · · ·, γn

2: second method:
Apply Grid Search with K-fold Cross-Validation

Split X(r)
(train,NCA) in K folds

Train the model across each fold
Measure mean accuracy
Allocates the mean accuracy for current hyperparameters
Select the best hyperparameters via highest mean accu-

racy: C(optimal) and γ(optimal)
3: third method:

Training the model with C(optimal) and γ(optimal)
4: fourth method:

Testing the optimized SVM using X
(r)
(test,NCA)

return Type of Appliance

For a given input datum, the k-NN algorithm discerns
the k nearest data points within the confines of the training
dataset. Subsequently, the algorithm ascertains the classifi-
cation outcome by conducting a majority vote among the
labels attributed to these proximate entities [12]. However,
the effectiveness of the algorithm depends on the choice of k.
Thus, a suitable choice for this hyperparameter is essential. To
achieve this objective, the proposed approach employs the Grid
Search combined with K-Fold Cross-Validation to ascertain
the optimal value for k. Considering these factors, Algorithm 3
presents a method to identify the type of appliance in function
via the optimized k-NN.

XGBoost is an ensemble method; thus, it produces deci-
sion trees and obtains predictions sequentially [13]. For this
algorithm, the system needs to determine the optimal choice

Algorithm 3 Load identification using the optimized k-NN
Input: Possible values for the hyperparameter k

(k1, k2, · · ·, kn), X
(r)
(train,NCA), X

(r)
(test,NCA), number of

folds (K)
Output: Type of Appliance

1: first method:
Load the possible values for hyperparameter k:
k1, k2, · · ·, kn

2: second method:
Apply Grid Search with K-fold Cross-Validation

Split X(r)
(train,NCA) in K folds

Train the model across each fold
Measure mean accuracy
Allocates the mean accuracy for current hyperparameters
Select the best hyperparameter via highest mean accu-

racy: k(optimal)
3: third method:

Training the model with k(optimal)
4: fourth method:

Testing the optimized k-NN using X
(r)
(test,NCA)

return Type of Appliance

of hyperparameters concerning maximum depth and number
of estimators. For this purpose, the proposed method applies
the hyperparameter search via Grid Search with K-Fold Cross-
Validation. Considering these criteria, Algorithm 4 presents an
approach to identify the type of appliance in operation through
the optimized XGBoost.

Algorithm 4 Load identification using the optimized XGBoost
Input: Possible values for the ‘max depth’ hyperparameter u

(u1, u2, · · ·, un), values for the ‘number of estimators’ hy-
perparameter w (w1, w2, · · ·, wn), X(r)

(train,NCA), X
(r)
(test,NCA),

number of folds (K)
Output: Type of Appliance

1: first method:
Load the possible values for both hyperparameters:
u1, u2, · · ·, un and w1, w2, · · ·, wn

2: second method:
Apply Grid Search with K-fold Cross-Validation

Split X(r)
(train,NCA) in K folds

Train the model across each fold
Measure mean accuracy
Allocates the mean accuracy for current hyperparameters
Select the best hyperparameters via highest mean accu-

racy: u(optimal) and w(optimal)
3: third method:

Training the model with u(optimal) and w(optimal)
4: fourth method:

Testing the optimized XGBoost using X
(r)
(test,NCA)

return Type of Appliance

III. PERFORMANCE METRICS

The current work uses the metrics of accuracy, weighted
average F1-Score (F1), and Kappa Index (K.I.) to analyze
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the performance of the proposed approach. It is essential
to mention that such metrics depend on indicators: true-
positive (TP), true-negative (TN), false-positive (FP), and
false-negative (FN).

Accuracy evaluates the global performance of the models
[12]. In this paper, accuracy is expressed according to

Accuracy =
TP + TN

TP + FP + TN + FN
. (1)

Due to the characteristics of the appliances, each device can
generate a varying number of events. Thus, it is necessary to
consider this effect for a fair analysis. For this purpose, this
study uses the F1 to incorporate this impact into the F1-Score
metric [12]. So, F1 is defined as per

F1 =
1

Q

∑
q ×

[
2× TP

2× TP + 1× (FN + FP)

]
, (2)

where q is the size of the set of instances of a class, and Q is
the size of the data set.

Furthermore, it is necessary to verify the concordance of
the system concerning the predicted value and the expected
value, which is addressed by K.I. [4]. This statistic metric
can vary within a range from -1 to 1. A K.I. value of -1
represents no agreement, 0 indicates chance agreement, and 1
means complete agreement. This document defines K.I. as per

K.I. =
2× (TP × TN − FN × FP)

(TP + FP)× (FP + TN) + (TP + FN)× (FN + TN)
. (3)

IV. RESULTS AND DISCUSSIONS

This work uses real-world data from the REDD public
database [14]. This dataset provides active power measure-
ments at a frequency of 1/3 Hz. The residence chosen from
this database includes several devices such as a dishwasher,
washer-dryer, heat pump, microwave, oven, kitchen oven,
refrigerator, bathroom Ground Fault Interrupters (GFI) outlet,
stove, lighting, and an unknown device.

It is worth mentioning that after the identification process
regarding the operational state of the equipment (either on or
off), the proposed system transforms the identified segments
into images possessing a resolution of 32 × 32 pixels, gen-
erating a total of 4609 images. From this total, the system
reserves 80% for training and 20% for testing, whereby only
the training data participates in the Grid Search with K-fold
Cross-Validation procedures. In addition, according to [4], we
have adopted ξ = 0.99. For a η = 100, Algorithm 1 determined
the optimal number of r components equal to 25. Finally, it
is necessary to point out that all the results reported in Tables
from III to VI are average values from 50 iterations.

A. Comparative analysis of k-NN-based approaches

In this scenario, we established the possible values for
the hyperparameter k (k1, k2, · · ·, kn) as per reference [4] to
guarantee a direct comparison. Hence, the options for k range
from 1 to 10, with an increment of 1. We have kept the value
of K=10 for the hyperparameter search. Then, we run the
Algorithm 3 for the k-NN approach (NCA-k-NN). Here, the
Algorithm appointed the optimal value for k equal to 1, i.e.,
k(optimal) = 1.

Table I compares the performances of the NCA-k-NN and
PCA-k-NN. Once again, all metrics at Table I demonstrate a
performance enhancement with the NCA technique. The NCA-
k-NN achieved improvements of 2.40% in accuracy, 2.42% in
F1, and 3.93% in K.I., compared to the PCA-k-NN.

TABLE I
PERFORMANCE OF APPROACHES USING THE k-NN MODEL

Method Accuracy F1 K.I.
PCA-k-NN [4] 93.49% 93.45% 0.8916
NCA-k-NN 95.89% 95.87% 0.9281

Table II presents the training and inference times associated
with the NCA-k-NN and PCA-k-NN. In this case, the NCA-k-
NN pair takes two times more training time than the competing
pair. However, for both PCA-k-NN and NCA-k-NN, the
training time is ultra short – 0.001 s and 0.002 s, respectively.

TABLE II
TRAINING AND INFERENCE TIMES MEASURED IN SECONDS

Method Training time Inference time
PCA-k-NN [4] 0.001 0.168
NCA-k-NN 0.002 0.150

B. Comparative analysis of SVM-based approaches
To ensure a fair comparison, we have defined the possible

values for the hyperparameters C (C1, C2, · · ·, Cn) and γ
(γ1, γ2, · · ·, γn) according to reference [4]. Consequently, the
possible values of C are 1, 10, 100, and 1000. So, the
possible values of γ are 1, 0.1, and 0.001. Furthermore,
we have maintained the value of K=10 for the search of
hyperparameters. When running Algorithm 2 for the SVM
approach (NCA-SVM), the system finds the optimal values
C(optimal) = 1000 and γ(optimal) = 0.001.

Table III compares the proposed method, the NCA-SVM
pair, with the competing approach [4], composed of the PCA-
SVM pair. The result in Table III indicates an improvement
in all the metrics associated with the NCA-PCA pair, sug-
gesting that the proposed method has an evident competitive
advantage. In this scenario, the NCA-SVM pair achieved the
highest accuracy, F1, and K.I. – 96.60%, 96.49%, and 0.9404,
respectively – exhibiting enhanced performance when using
NCA.

TABLE III
PERFORMANCE OF APPROACHES USING THE SVM MODEL

Method Accuracy F1 K.I.
PCA-SVM [4] 96.31% 96.36% 0.9381
NCA-SVM 96.60% 96.49% 0.9404

Table IV shows the training and inference times of the
proposed approach, the NCA-SVM pair, and the competing
method [4], consisting of the PCA-SVM pair. In this case, the
NCA-SVM pair saves approximately 5.39% of the training
time compared to the PCA-SVM pair, ensuring that the
proposed approach is faster than the competitor.
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TABLE IV
TRAINING AND INFERENCE TIMES MEASURED IN SECONDS

Method Training time Inference time
PCA-SVM [4] 0.167 0.075
NCA-SVM 0.158 0.048

C. Comparative analysis of XGBoost-based approaches

In this scenario, this study compares the strategies based on
XGBoost present in the work [10]. Then, for a proper match
with reference [10], we employ the same sets of possible
hyperparameter values. Consequently, the possible values for
the max depth u (u1, u2, · · ·, un) are within the interval from
10 to 100, with the step size for the search of 10. We also
apply the same interval and step size in the search for the
number of estimators w (w1, w2, · · ·, wn).

Table V summarizes the performance of various approaches
involving the XGBoost architecture. In this context, we can
extract useful information about these results. The minimum
difference in performance lies between the PCA-XGBoost and
NCA-XGBoost strategies, where the NCA-XGBoost strategy
demonstrates a slight edge, yielding a 0.04% improvement in
accuracy and 0.06% increase in K.I. Conversely, the most
noteworthy performance gap is between the LLE-XGBoost
and NCA-XGBoost. In this case, the NCA-XGBoost approach
has percentage advantages in terms of accuracy, F1, and K.I.
– 2.00%, 2.14%, and 3.74%, respectively.

TABLE V
PERFORMANCE OF APPROACHES USING THE XGBOOST MODEL

Method Accuracy F1 K.I.
LLE-XGBoost [10] 94,03% 93.67% 0.8954
ICA-XGBoost [10] 95.77% 95.57% 0.9257
PCA-XGBoost [10] 95.99% 95.81% 0.9296
NCA-XGBoost 96.03% 95.81% 0.9302

Table VI shows the training and inference times for the
XGBoost approaches cited in this manuscript. In this scenario,
the slightest performance advantage lies between the LLE-
XGBoost and NCA-XGBoost methods. The NCA-XGBoost
strategy has a training time of 1.84 times faster than that
of the LLE-XGBoost, and its inference time is 193.81 times
quicker than the LLE-XGBoost. On the other hand, the highest
difference in performance is between the PCA-XGBoost and
NCA-XGBoost strategies. The NCA-XGBoost approach has
training and inference times faster than the PCA-XGBoost –
8.10 and 310.82 times faster, respectively.

TABLE VI
TRAINING AND INFERENCE TIMES MEASURED IN SECONDS

Method Training time Inference time
PCA-XGBoost [10] 10.176 3.419
ICA-XGBoost [10] 6.806 2.541
LLE-XGBoost [10] 2.314 2.132
NCA-XGBoost 1.256 0.011

V. CONCLUSION

As an evolution of the work [4], this article proposes novel
approaches to load recognition in HEMS. Among the proposed
innovations are the application NCA jointly with the optimized
SVM, with the optimized k-NN, with the optimized XGBoost,
and also enhanced results for training and inference times.
For all the proposed approaches, i.e., NCA-SVM, NCA-k-NN,
and NCA-XGBoost, there is a performance improvement when
compared to adversarial methods. Regarding this manuscript,
the NCA-SVM pair reaches the highest accuracy, F1, and
K.I. – 96.60%, 96.49%, and 0.9404, respectively. Concerning
performance gains, the NCA-k-NN pair yields the highest
boosts in terms of accuracy, F1, and K.I. – 2.40%, 2.42%, and
3.93%, respectively. Nevertheless, the NCA-XGBoost has the
best-enhanced performance regarding the efficiency in training
and inference times – 8.10 and 310.82 times faster than the
rival, respectively – surpassing the adversarial method. The
results demonstrate that the joint use of the NCA with ML
models is a more robust alternative for load recognition.
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