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Noise enhancement of pattern discrimination in
temporal coding

Juliana Martins de Assis and Francisco M. de Assis

Abstract— Temporal coding is one mechanism of neuronal
information processing. In this paper, we investigated whether
there is a significant contribution of extrinsic noise in temporal
coding, quantitatively. In order to do so, we simulated different
patterns through white noise current, and we used the celebrated
Hodgkin-Huxley model to obtain interspike intervals. Then, we
fitted gamma distribution to the interspike interval histograms
of each pattern and we estimated parameters of shape and rate
in each case. These estimated parameters enabled the calculation
of information measures, such as differential entropy. These
information measures provided us evidence of the improved
extrinsic noise contribution to the discrimination of patterns in
neuronal temporal coding, when compared to the contribution
of mean value of synaptic current.

Keywords— Temporal coding, Entropy, Interspike Interval,
Hodgkin-Huxley.

I. INTRODUCTION

In computer science, patterns are related to regularities in
data that computer algorithms may find. These regularities may
be used in data classification, for example [4]. Similarly, in the
nervous tissue, neurons receive patterns. But these patterns are
related to the joint activity of many other neurons, or to the
environmental stimuli, whether neurons are in the central or
peripheral nervous systems.

We can think about the nervous system as a pattern recogni-
tion machine. All animals need to interpret the environment in
order to survive. According to neuroscience, most of informa-
tion in nervous system is processed in neurons [2]. Neuronal
sensing, processing and coding information enabled animal
survival and evolution. Also, neurons collectively have enabled
the development of higher and complex cognitive functions.

In the context of sensory data, for example, there are
different mechanisms by which neurons process information.
For example, latency coding is the mechanism where first
spike timing relative from stimulus presentation encodes the
stimulus to which neuron is submitted [27]. Other encoding
mechanisms include rate and temporal codings [9]. The latter
stands for the mechanism where interspike interval (ISI)
encodes information from the presented stimulus.

As many other neuronal features, ISI observed in neurons
is random. The randomness in interspike interval is due to
intrinsic and extrinsic noise. Intrisic noise is associated to the
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random open and closing of ion channels, whereas extrinsic
noise is associated to random synaptic input [6].

Typically, in engineering systems, noise constitutes a factor
that impairs information transmission. However, noise may
improve information transmission in nonlinear systems. A
notorious example is the phenomenon of stochastic resonance
[3]. In this phenomenon, the transmission of a periodic sig-
nal in nonlinear systems is augmented through the addition
of noise in a certain level. Different research groups have
reported stochastic resonance in several neural systems (see
[7] and references therein). Another mechanism where noise
improves a signal is called coherence resonance [19], which
has implications in visual sensory information processing [20].
Recently, [14] demonstrated signal transmission enhancement
through presynaptic noise, in the context of latency coding,
using a stochastic perfect integrate-and-fire neuronal model.

In cortical neurons, there is one essential input, which is a
synaptic current that presents a mean and a standard deviation.
Some questions of interest here are: how the ISI distribution
is sensible to each parameter, mean and standard deviation?
Additionally, how does the ISI differential entropy change in
response to these parameters variations? This last question is
an interesting one, in the context of temporal coding, since dif-
ferential entropy is an information measure, with implications
to information coding. In this paper, we aim to answer the
aforementioned questions using the Hodgkin-Huxley model,
one of the most successful quantitative computational models
in neuroscience [8], [12].

The rest of the paper is organized as follows. Section II
explains the methodology used in this paper. Section III reveals
and discusses the results and Section IV concludes the paper.
In the remaining of the text, the operatorsE(·) and V (·) denote
expected value and variance, respectively.

II. MATERIALS AND METHODS

A. Simulation

In order to understand the capability of neurons to dis-
criminate different patterns, the first step was to model which
were the different patterns to which neurons are submitted.
Reference [16] reported that, specially in the cortex, neurons
are excited by a synaptic current which resembles white
Gaussian noise. Moreover, reference [25] models this current
as:

I(t) = µ+ σ
dW

dt
, (1)

where µ is a drift and σ is diffusion parameter. W is a
standard Wiener process, thus, it is a process with independent
increments, and dW is the realization of a normal random
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variable with zero mean and variance equal to the dt. The time
derivative of Wiener process is a white Gaussian noise [18].

If we approximate
dW

dt
as

∆W

∆t
, where ∆W ∼ N (0,∆t), we

have for each time instant:

Ik = µ+ σ
∆W

∆t
,

E(Ik) = µ,

V (Ik) =
σ2

∆t2
V (∆W ) =

σ2

∆t2
∆t =

σ2

∆t
. (2)

Thus, the drift parameter is the mean synaptic current at each
time instant, and the diffusion parameter is related to the
current variance at each time instant.

The Hodgkin-Huxley model presents the following equa-
tions [10]:

C
dU

dt
= I − ḡKn

4(U − EK)− ḡNam
3h(U − ENa)

−gL(U − EL)
dn

dt
= αn(U)(1− n)− βn(U)n

dm

dt
= αm(U)(1−m)− βm(U)m

dh

dt
= αh(U)(1− h)− βh(U)h. (3)

In the paper, I is the synaptic current given as in equation
(1). In this nonlinear system of differential equations, U is
the membrane potential, C = 1 µF/cm2 is the capacitance
of the neuronal membrane, ḡK = 36 mS/cm2 is the maximal
conductance of potassium channels, ḡNa = 120 mS/cm2 is the
maximal conductance of sodium channels, gL = 0.3 mS/cm2

is the conductance of the leakage current (capacitance, current
and conductance are normalized by area units). The state
variables n, m and h are activation/inactivation gate variables,
and αm, αn, αh, βm, βn and βh are functions of the membrane
potential U :

αn(U) =
0.01 (10− U)

exp

(

10− U

10

)

− 1

βn(U) = 0.125 exp

(

−U

80

)

αm(U) =
0.1 (25− U)

exp

(

25− U

10

)

− 1

βm(U) = 4 exp

(

−U

18

)

αh(U) = 0.07 exp

(

−U

20

)

βh(U) =
1

exp

(

30− U

10

)

+ 1

(4)

These equations are used with a shifted membrane potential
of 65 mV, so the resting potential of the membrane is U ≈ 0.

The shifted values for EK, ENa and EL are -12 mV, 120 mV
and 10.6 mV, respectively.

We set ∆t = 0.01 ms in Euler method as a numerical
approximation to obtain the state variable U , in order to
achieve spike times and ISIs. We calculated spike times when
the membrane potential was increasing and reached 35 mV, as
in [17]. Moreover, we also filtered membrane potential through
a moving average filter, which took 200 values to perform
filtering. We wrote the simulation code in Python.

B. Information measures

In order to address how neurons discriminate different
patterns, as mentioned in Section I, we used an information
measure, differential entropy, which is, in the context of
continuous random variables, related to the volume of the set
with most of probability [5], and is mathematically defined as:

h(f) = −

∫

S

f(x) ln f(x)dx, (5)

where S stands for the support of the random variable X with
probability density function f(x). We chose to use differential
entropy as it is related to the uncertainty of the continuous
random variable ISI, which has implications in how one could
code its information.

III. RESULTS AND DISCUSSION

Firstly, with the methods described in Section II, we simu-
lated different patterns represented by different parameter pairs
of synaptic current: (µ, σ). Specifically, we tested the values
for µ: 0, 0.2 and 0.4 µA/cm2. For σ, we tested the values
1.5, 1.7 and 1.9 µA/cm2. In our simulations we observed the
first 300 intersike intervals, registering the rate (in spikes per
second) and the local variation of ISIs, to examine whether
the simulated parameter pairs were biologically feasible. Local
variation is a measure of spike pattern irregularity [22] and is
given by 1/(n − 1) ·

∑n−1

i=1
(3(Xi −Xi+1)

2/(Xi +Xi+1)
2),

where Xi is the i-th ISI registered. Table I presents these
first results. We observe that the obtained values for these
statistics are consistent with those reported in other papers. For
example, reference [21] mentions rates from less than 1 spike
per second to several tens of spikes per second. Moreover,
reference [22] mentions around 0.78 as one typical value for
local variation in the cortex of awake behaving monkeys.

TABLE I

RATE AND LOCAL VARIATION WITH SIMULATED PARAMETERS (µ AND σ

IN µA/CM2).

(µ, σ) Rate Local variation
(0, 1.5) 2.66 0.86
(0, 1.7) 5.40 0.82
(0, 1.9) 9.26 0.61

(0.2, 1.5) 3.07 0.85
(0.2, 1.7) 6.74 0.68
(0.2, 1.9) 10.27 0.64
(0.4, 1.5) 3.61 0.86
(0.4, 1.7) 7.25 0.76
(0.4, 1.9) 10.95 0.57
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Secondly, we searched for probability distributions that
would have adequate fit for ISI histograms obtained in each
pattern (with each parameter pair). For a integrate-and-fire
neuronal model, ISIs are independent and identically dis-
tributed as inverse Gaussian [14]. However, to the best of
our knowledge, there is not a mathematical treatment that
determines ISI distribution in a Hodgkin-Huxley model when
white noise current is applied. Some references with data
from electrophysiological recordings model ISI as gamma,
exponential or inverse Gaussian distributed (see references
[1], [23], and [15] for example). Exponential is a particular
case of gamma distribution, which is a maximum entropy
distribution [11]. There is evidence that gamma distribution
presents good fit for modeling ISI typically greater than 20
ms [1]. Since most of the ISIs obtained in our simulations are
greater than 20 ms, we chose to make an adjustment of ISI
histograms with gamma distribution. Gamma distribution has
the following density:

fX(x; η, λ) =
λη

Γ(η)
xη−1e−λx, x > 0, (6)

where λ > 0 is a rate parameter and η > 0 is the shape
parameter. Also, for a gamma distributed ISI X , we have mean

E(X) =
η

λ
, (7)

and variance

V (X) =
η

λ2
. (8)

There is not a closed solution for maximum likelihood es-
timators for parameters η and λ [13]. Using the method of
moments, we obtained the estimates:

η̂ =
X̄2

S2
X

, (9)

λ̂ =
X̄

S2
X

., (10)

where S2
X =

∑n

i=1
(Xi − X̄)2/(n − 1). We used 300 ISIs

from each setting to build histograms and 5 bins. Since the
distribution of ISIs is usually very asymmetrical and right-
skewed, we decided to use nonuniform bins, from 0 to 50 ms,
from 50 ms to 100 ms, from 100 ms to 200 ms, from 200 ms to
300 ms and from 300 ms beyond, to all simulated situations.
Figures 1, 2, 3, 4, 5, 6, 7, 8 and 9 present us the resulting
histograms and fitted gamma densities for all the simulated
pairs of synaptic input. Additionally, we performed χ2 test
for goodness of fit, and we obtained the values indicated in
Table II, which also has the values of estimated parameters.
The p-values found in all simulated patterns may not reject our
assumption that ISIs are gamma distributed with the estimated
values for η and λ, at least at significance levels such as 1%
or 5%.
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Fig. 1. Resulting ISI histogram and adjusted gamma for parameters: µ = 0,
σ = 1.5.
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Fig. 2. Resulting ISI histogram and adjusted gamma for parameters: µ = 0.2,
σ = 1.5.
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Fig. 3. Resulting ISI histogram and adjusted gamma for parameters: µ = 0.4,
σ = 1.5.
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Fig. 4. Resulting ISI histogram and adjusted gamma for parameters: µ = 0,
σ = 1.7.
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Fig. 5. Resulting ISI histogram and adjusted gamma for parameters: µ = 0.2,
σ = 1.7.
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Fig. 6. Resulting ISI histogram and adjusted gamma for parameters: µ = 0.4,
σ = 1.7.
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Fig. 7. Resulting ISI histogram and adjusted gamma for parameters: µ = 0,
σ = 1.9.

TABLE II

ESTIMATED GAMMA PARAMETERS AND p-VALUE FOR CHI-SQUARE

GOODNESS OF FIT TEST (µ AND σ IN µA/CM2).

(µ, σ) η̂ λ̂ p-value Entropy (nats)
(0, 1.5) 1.169 0.003 0.91 6.93
(0, 1.7) 1.215 0.007 0.87 6.18
(0, 1.9) 1.332 0.013 0.58 5.64

(0.2, 1.5) 0.983 0.003 0.052 6.77
(0.2, 1.7) 1.240 0.008 0.61 5.99
(0.2, 1.9) 1.406 0.015 0.70 5.54
(0.4, 1.5) 1.192 0.004 0.07 6.63
(0.4, 1.7) 1.410 0.010 0.33 5.88
(0.4, 1.9) 1.259 0.014 0.13 5.48

Table II also presents the computed information measures.
The differential entropy of a gamma distribution f with
parameters η and λ is given as [26]:

h(f) = (1− ηf )ψ(ηf )− lnλf + lnΓ(ηf ) + ηf ,

(11)

where ψ(x) is the digamma function defined by ψ(x) =
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Fig. 8. Resulting ISI histogram and adjusted gamma for parameters: µ = 0.2,
σ = 1.9.
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Fig. 9. Resulting ISI histogram and adjusted gamma for parameters: µ = 0.4,
σ = 1.9.

Γ′(x)/Γ(x). If we apply this formula with the different es-
timated values for η and λ, we obtain the entropies shown in
Table II, last column, in nats.

Observing the entropy values in the last column of Table
II, we notice some interesting characteristics. Firstly, keeping
the mean value constant, we see that as the variance of the
input current increases, the entropy of ISIs diminishes (at
least for the tested values of synaptic input), which is a quite
counterintuitive fact. This fact is possibly due to the neuronal
dynamics. A greater diffusion parameter may cause the neuron
to spike more often, reaching its refractory period. Secondly,
we may calculate the deviation in entropies and compare to
which parameter, drift or diffusion, it is more sensible to. For
example, fixing the diffusion parameter σ = 1.5 of the applied
synaptic current, we obtain:

|∆h| = |h(f0,1.5)− h(f0.2,1.5)| ≈ 0.1 nats,

|∆h| = |h(f0.2,1.5)− h(f0.4,1.5)| ≈ 0.2 nats,

|∆h| = |h(f0,1.5)− h(f0.4,1.5)| ≈ 0.3 nats.

(12)

Also, when fixing the values for σ = 1.7 and σ = 1.9, we
obtain:

|∆h| = |h(f0,1.7)− h(f0.2,1.7)| ≈ 0.2 nats,

|∆h| = |h(f0.2,1.7)− h(f0.4,1.7)| ≈ 0.1 nats,

|∆h| = |h(f0.4,1.7)− h(f0,1.7)| ≈ 0.3 nats,

|∆h| = |h(f0,1.9)− h(f0.2,1.9)| ≈ 0.1 nats,

|∆h| = |h(f0.2,1.9)− h(f0.4,1.9)| ≈ 0.0 nats,

|∆h| = |h(f0.4,1.9)− h(f0,1.9)| ≈ 0.1 nats.

Thus, fixing the diffusion parameter, and deviations of
∆µ = 0.2 or 0.4, the greatest found value for entropy deviation
was approximatelly 0.3 nats.
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On the other hand, fixing the drift parameter, we obtain:

|∆h| = |h(f0,1.5)− h(f0,1.7)| ≈ 0.7 nats,

|∆h| = |h(f0,1.7)− h(f0,1.9)| ≈ 0.6 nats,

|∆h| = |h(f0,1.9)− h(f0,1.5)| ≈ 1.3 nats,

|∆h| = |h(f0.2,1.5)− h(f0.2,1.7)| ≈ 0.8 nats,

|∆h| = |h(f0.2,1.7)− h(f0.2,1.9)| ≈ 0.5 nats,

|∆h| = |h(f0.2,1.9)− h(f0.2,1.5)| ≈ 1.3 nats,

|∆h| = |h(f0.4,1.5)− h(f0.4,1.7)| ≈ 0.7 nats,

|∆h| = |h(f0.4,1.7)− h(f0.4,1.9)| ≈ 0.4 nats,

|∆h| = |h(f0.4,1.9)− h(f0.4,1.5)| ≈ 1.1 nats,

Observing these calculations, we see that ISI distribution
is extremelly sensible to the magnitude of σ, the noise of
the applied current, when compared to similar changes in
magnitude of drift parameter. When deviation in the synaptic
parameters are of ∆µ = ∆σ = 0.2, the changes in entropy
are of the order of twice to eight times greater when varying
extrinsic noise than when varying mean value of synaptic
current. When deviation in the synaptic parameters are of
∆µ = ∆σ = 0.4, differences in entropy are about four to ten
times greater when considering noise than when considering
mean synaptic input. Since entropy is a measure of uncertainty
of a random variable, from these results we observe that
neuronal temporal coding is deeply related to the noise of
the environment that neuron is submitted to.

Interestingly, there is a similar result reported by [24] in the
context of rate coding, which showed that when white noise
current is applied in Hodgkin-Huxley neuron, the firing rate
of the neuron is more sensible to the variance of the applied
current than to its mean value, providing us one more evidence
about noise contribution to neuronal activity and information
processing.

IV. CONCLUSION

In this paper we simulated Hodgkin-Huxley model in re-
sponse to different white noise synaptic currents with certain
mean and standard deviation. We observed that, for the tested
values of synaptic input and keeping the mean value constant,
the differential entropy of ISIs distributions diminishes as the
standard deviation of the input increases. Also, our results
show that, in a scenario such as the cortex of animals, where
synaptic input may be modelled as white noise and ISI may be
modelled as gamma distributed, information measures of ISIs
are very sensible to changes in the diffusion parameter, which
is related to the noise the neuron is submitted to. Specifically,
differential entropy of ISIs changes dramatically with changes
in the standard deviation magnitude in comparison to similar
changes in the mean value of the pattern. Since in temporal
coding information is encoded through ISI, we concluded that
neurons are very sensible to extrinsic noise in this mechanism
of information processing.
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