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Abstract— The digital transformation in healthcare is a recur-
ring theme around the world. However, the continental extension
of Brazil makes it difficult to offer basic healthcare services in
remote locations. Due to the scarcity of diagnosis services in
these areas, this article proposes leveraging Federated Learning
as a way to reduce costs and mitigate these problems, helping
with pre-diagnosis. The experiments carried out showed that just
using the federated approach can increase the model’s predictive
capacity and reduce training time. The model developed using
Federated Learning increased the model’s accuracy by 14%,
while managing to reduce the model’s loss in the validation set
by 1.0354.

Keywords— Federated Learning, Internet of Things, Radiog-
raphy, Deep Learning.

I. INTRODUCTION

Technological advancements in the medical field have
greatly improved the diagnosis and treatment of various
diseases, making them more effective, affordable, and less
burdensome for patients and clinicians. The emergence of
new medical technologies offers opportunities for the early
detection of diseases through data that are used to analyze
the patient’s health [1]. Traditionally, in the field of radiology,
medically trained professionals were responsible for visually
assessing medical images and identifying, characterizing, and
classifying diseases. However, Computer Vision (CV), a sub-
field of Artificial Intelligence (AI), has emerged as a promising
alternative, capable of automatically recognizing complex pat-
terns in data images and providing quantitative assessments,
as opposed to human assessments of radiography results [2],
[3].

Simultaneously, the rise of devices dedicated to patient
health underscores the emergence of the AI of Med Things
(AIoMT) as an approach to implementing AI at the edge. The
growing integration between advances in IoT and emerging
demands in healthcare reflects a trend toward more accessi-
ble, personalized, and proactive services through AIoMT. In
this context, AIoMT is becoming fundamental in healthcare
management, playing a significant role in optimizing care and
promoting a more effective approach to the well-being of
patients [4]. However, a few more technologies are needed
for implementation and collaboration between hospitals and
healthcare institutions in the area of Big Data. One of these
technologies is Federated Learning (FL), a technology that
enables the joint development of AI models [5].

Distributed training, such as FL, has emerged as a promising
approach, allowing collaborative training of models by dis-
tributing the learning process across multiple devices. This
overcomes challenges such as privacy, data heterogeneity,

and communication efficiency while maintaining the security
and anonymity of patient data. These approaches have been
successfully applied to medical image analysis and tackle
important issues such as privacy preservation and fairness [6],
[7].

This article proposes an AIoMT solution that integrates CV
and FL into an IoT framework that can be easily installed in
hard-to-reach places. CV aims to diagnose numerous images
quickly and efficiently using the Squeezenet V1.0 architecture.
FL, on the other hand, enables better collaboration between
hospitals and institutions that adopt the approach. It guarantees
the best model for everyone involved and the non-disclosure
of sensitive data. Finally, the IoT framework makes installing
the application in remote and low-resource areas possible,
ensuring that emerging countries can access it. Not only that,
but the multiple experiments that have been carried out prove
that the use of FL in model training can help increase the
model’s predictive capabilities in SqueezeNet and MobileNet
architectures. Therefore, the methodology presented for train-
ing models can be applied to different databases, scenarios,
and contexts for effective training. The article is structured
as follows: Section II introduces related literature. Section
III describes the employed methodology. Section IV presents
the results obtained, along with their qualitative discussion.
Finally, Section V concludes the study and outlines future
research directions.

II. RELATED WORKS

The systematic review presented in [8] revealed significant
findings that point to the potential use of emerging technolo-
gies such as Edge Computing Models (ECMs), Unmanned
Aerial Vehicles (UAVs), IoT, cloud sensor networks, and
Machine Learning (ML). These tools can potentially improve
efficiency in disaster visualization, analysis, and prediction,
as well as empower healthcare professionals to deal with
emergencies more effectively. In contrast to the previous study,
which focused on comparing and identifying a specific model
for chest disease, this work suggests a more complex approach,
proposing different models for each case and aiming for a
more accurate analysis that is adaptable to the circumstances.
The implications of this research are vast, including the
possibility of improving preparedness and response strategies
in disaster medicine through the implementation of advanced
remote technologies such as IoT, ML, and virtual and aug-
mented reality.

Meanwhile, a study on the VGG-19 model for detecting
chest diseases focuses on analyzing multiple X-ray images,
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emphasizing DL and knowledge transfer. On the other side, a
systematic review of emerging technologies to improve disas-
ter efficiency shows the importance of IoT, ML, and virtual
reality, suggesting different models for each case. In addition,
an article on the use of blockchain for ensuring the security of
health systems based on AI emphasizes the protection of health
data. It proposes solutions to mitigate vulnerabilities against
adversary attacks, pointing to blockchain as a promising
solution to strengthen the security of health systems. The work
[9] focuses on the classification of pneumonia in chest X-
ray images using TF, specifically using Convolutional Neural
Networks (CNNs). The study uses a pre-trained ResNet50
model, which is centrally trained. Their model achieves an
accuracy of 91.8 %.

The study presented in [10] analyzes the performance of
various AI architectures, detailing the use of processing, the
number of parameters in each model, and their accuracy
using the Image-Net database. It is important to note that the
performance of these models can vary depending on the type
of database. In turn, the present article proposes the adoption
of models with fewer parameters and processing to reduce
the costs of IoT devices, achieving greater accuracy than the
one attained by the first article, [11], with other FL models,
emphasizing the influence of performance in relation to the
diversity of databases in different architectures, as evidenced
in [10].

Although several researchers have developed models,
methodologies, and frameworks for producing AI models for
the medical field, none focus on applying them to low-income
or remote locations with constrained resources. Also, the po-
tential of FL to improve the model during the training process
has not been explored, a result shown in this article through the
experiments carried out. Therefore, this study aims to develop
an FL-based solution employing distributed IoT devices to
serve remote and low-income regions. It brings these regions
closer to urban centers through a service integrated with these
devices, providing preliminary diagnostic information for pa-
tients and health professionals. A comparison is made between
a centralized model with local training and an embedded
model trained with FL, i.e., distributed training, revealing a
significant improvement in accuracy and loss minimization.
This proposes the distributed capacity of FL over locally
trained models, focusing on data privacy. It is important to
note that none of the models used in this work employed TF,
i.e., they were trained from scratch.

III. MODEL DEVELOPMENT AND TRAINING

This section presents the main details and how the proposed
solution works, showing the main software and hardware
components.

A. Application Architecture

The application can be separated into three layers: I) IoT,
II) Local FL, and III) Server. The first layer is where the
system demonstrates a tangible result for the user, being the
layer where the clients will have contact with the application.
This result is presented through effective and efficient models

for classifying diseases. This means rapid image processing
for diagnosis. The main actors in this layer are the doctors,
patients, and other health professionals responsible for diag-
nostic imaging, communication with other systems and sectors
responsible, such as the finance sector, diagnostic imaging
sector, and others, using Hypertext Transfer Protocol (HTTP),
client-server, with communication over the internet. In other
words, the embedded device will receive the image after the
X-ray examination through a photograph or scan so that the
inference can be made and the pre-diagnosis can be reported.

Currently, the application has no graphical interfaces, so
the image must be inserted into the model using commands.
Therefore, the professional interested in examining the image
through the application must first transfer the image to the
server and then make the inference through the trained model
using commands in the terminal. This is not an intuitive
practice, but it must be borne in mind that each page must
be designed exclusively for the context of the application,
something done later and on demand.

The second layer is responsible for local training of the
model, where FL is first applied. Each hospital, clinic, or
institution of interest trains its model in isolation using the
same CNN architecture in this layer. A data pre-processing
stage is necessary at this layer to use homogeneous data
for training the model since it expects images with certain
height, width, and channel characteristics. The second stage
is also responsible for sharing the gradients of the best local
model with the server. The third layer is where the models are
aggregated, and a global model is developed to distribute the
best model among the clients.

B. The SqueezeNet V1.0 model

The SqueezeNet V1.0 is a compact CNN model designed
for efficient computation and resource usage while maintaining
competitive performance in CV tasks like image classifica-
tion [12]. Its features make SqueezeNet an excellent choice
for implementing embedded devices like those used in the
proposed application. Table I is a brief comparison between
models developed with computational efficiency in mind and
their respective sizes. In this sense, the highlight of choosing
SqueezeNet is its lean architecture. It achieves this by utilizing
squeeze layers with 1x1 convolutions to drastically reduce
parameters and employing fire modules for compact yet deep
architecture. Despite its lighter parameter count, SqueezeNet
maintains competitive performance and is widely available for
various CV applications. According to the paper proposing
this model, [12], the architecture has approximately 1 million
parameters, with a model file of 4.8 MB and a processing
capacity of 823 million FLOPS.

C. Hardware Components of the FL Application

The solution utilizes two Raspberry Pi 4B (Pi4B) boards for
local model training, featuring specifications such as Broad-
com BCM2711 processor, varying RAM capacities, wire-
less and Bluetooth capabilities, Gigabit Ethernet, USB ports,
micro-HDMI ports, MIPI display and camera ports, audio
and video outputs, hardware decoding capabilities, OpenGL
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TABLE I
COMPARISON BETWEEN THE COMPUTATIONAL EFFICIENT DESIGN

MODELS [13], [14].

Architecture Size Parameters Top-5 Accuracy
MobileNet V1 16MB 4.3M 89.5 %
MobileNet V2 14MB 3.5M 90.1 %
MobileNet V3 20MB 5.47M 75.6 %
SqueezeNet V1.0 <0.5MB 1.24M 80.4 %
SqueezeNet V1.1 <0.5MB 1.23M 80.6 %

and Vulkan support, micro-SD card slot, and power options
via USB-C or GPIO header. A laptop server, specifically an
IdeaPad Gaming 3i 6th Generation, with powerful Intel Core
processors and NVIDIA GeForce GTX graphics card, is used
for weight aggregation. However, another Raspberry Pi board
can be used for this purpose.

D. Software Components of the FL Application

The SqueezeNet model’s training parameters must be ad-
justed systematically since the experiment aims to compare
centralized and distributed approaches. In this way, all the
parameters were defined identically for both the federated and
centralized processes. The main parameters defined were the
following: scaling: normalization, Optimizer: Adam, Learning
rate: 0.001, and Batch size: 32. These are standard values used
during the training of CV models that do not change during
the training phase.

The FastAI framework was used to process the image and
train the SqueezeNet model [15]. FastAI is a high-level DL
library built on top of PyTorch that aims to make DL more
accessible to practitioners and researchers by providing easy-
to-use application programming interfaces (APIs) and a range
of pre-built models and utilities. On the other hand, the Flower
framework was used for FL training [16]. The framework is an
open-source platform designed to facilitate FL tasks, providing
a simple API for FL and allowing developers to define
tasks, models, and data sources easily. It supports various
ML frameworks like TensorFlow and PyTorch and provides
features for dynamic model averaging, secure aggregation, and
asynchronous training. Google Remote Procedure Call (gRPC)
is the API system used for communication between the two
boards and the aggregator server [17]. In gRPC, a component
(client/Raspberry Pi) calls or invokes specific functions in
another software component (server/computer).

GRpC enables communication to take place in the appli-
cation through the exchange of information and coordination
between devices. Within the application, there are specific
functions and registers for each stage of model training.
For example, the strartFlwrGRPC function is used to initiate
communication between the clients and the server. At the same
time, there is a register responsible for receiving, sharing, and
storing the parameters and messages exchanged by the devices.
GRPC is, therefore, used throughout the communication pro-
cess between devices, both for Clients and Servers and vice
versa.

E. Federated Learning-based Training

ML models, including CNNs, learn by iterative adjusting
their weights to minimize a loss function. This loss function
quantifies the model’s performance on a training dataset. To
achieve optimal performance, the model must move towards
a point in weight space where the loss function is minimized.
Gradients play a crucial role in this optimization process. They
are the partial derivatives of the loss function concerning the
model’s weights. These gradients indicate the direction and
magnitude of change required for the weights to reduce the
loss function.

FL allows training a single model across devices without
sharing private/sensitive data. The two devices train a local
copy of the model on their own information and calculate
gradients, which indicate how to improve the model. Instead
of the raw data, these gradients are shared with a central server,
which averages them to update the global model. This updated
model is then distributed back to the two devices for the next
training round. Therefore, the proposed application works as
follows:

1) The application is started on the server, randomly cap-
turing the weights initialized on one of the clients to
configure the global model;

2) The training is initialized on each of the clients individ-
ually, thus generating a local model at the end;

3) Once all the clients have sent their weights, the Global
model is generated by the server using the arithmetic
mean of all of them;

4) The Global model is shared with each client;
5) Another round of training is started, and the whole

process is repeated until N rounds have been completed.

F. The dataset

Effective training of a CV model requires a comprehensive
and representative set of images. However, it is not easy to
meet these requirements in the clinical area due to problems
related to the sensitivity of this data type [18]. Other charac-
teristics that make it difficult to obtain this kind of data are
related to the high cost of creating these databases. Since it is
necessary to take care of the privacy of the information and
the labeling of the images [19].

The model development phase uses a dataset obtained from
Kaggle [20], a data science community that offers free access
to dozens of image databases. The dataset contains three
classes, organized as follows: I. No disease, II. Bacterial pneu-
monia, and III. Viral pneumonia. The dataset selected contains
4672 labeled images, which by standard were separated into
80% for training and 20% for validation purposes. Therefore,
3738 random images are used for model training and 934 for
validation. However, in the FL approach, it is still necessary
to separate the dataset for the devices to simulate scenarios
that are closer to the real ones, where different image bases
will be used for each of the Clients. Therefore, the image base
was randomly separated into two smaller ones (2336 samples
each), separating different images for each client.

The number of observations per class is distributed as
follows: 1227 images belong to class I, 2238 images belong to
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Fig. 1. Comparing the validation Loss presented by the SqueezeNet model
in traditional (centralized) and FL approach.

class II, and 1207 images belong to class III. In this sense, the
dataset used presents an imbalance between the classes and
an unlabeled test set. However, class imbalance is common
in medical scenarios, particularly when it is anticipated that
only a small proportion of patients will ultimately receive a
diagnosis of the disease in question. The dataset presented is
used in both the centralized and federated approaches in an
attempt to be as fair as possible when comparing the results
presented.

IV. RESULTS AND DISCUSSIONS

The results obtained in our experiments show several ben-
efits of using the AIoMT approach. Figure 1 shows the
validation loss of both architectures during 50 training epochs.
It can be seen that using FL in this context avoided overfitting
the model. The blue and orange curves show the validation
loss of each Raspberry Pi device. The weights of both local
models are sent to the central aggregator every 10 epochs.
Therefore, after every 10 epochs, as it is noticeable, the loss
value suffers a visible drop. It shows that the aggregated model
is better than the local ones, achieving a higher generalization
capacity than the individual models. However, the results also
show that the local models exhibit an overfitting tendency
between model aggregations, which is refrained by aggregat-
ing the local models’ gradients. Figure 2 shows the training
loss. As is visible, after around 15 epochs, the loss of the
centralized model becomes lower than that of the Raspberry
Pi devices, which, as supported by the validation loss, shows
the centralized model is overfitting.

Sharing the gradients in each aggregation round shows a
significant performance improvement compared to the model
residuals for both devices. Some points to note are that the
traditional, i.e., centralized, method obtained a lower loss in
the training set, but the loss presented in the validation set
shows a big difference between the methods. Once again,
the FL contribution to improving the error rate of the final
model is visible. The gap between the two models’ final error
rates is also outstanding. In this respect, the FL has much to

Fig. 2. Comparing the training loss presented by the SqueezeNet model in
traditional and federated approach.

Fig. 3. Comparing the Validation Error Rate presented by SqueezeNet model
in traditional and FL approach.

offer when training the distributed model. Figure 3 shows this
phenomenon.

In this way, it is possible to see that the model trained
using the FL had a higher generalization capacity. As the
main objective in training a model is to maximize its ability
to generalize, the final model of the FL method is better. The
Table II shows the best values obtained.

The accuracy shown by the model using FL is much
higher than that obtained by the centralized approach. Once
again, the advantage of aggregation is twofold: it improves
the generalization capacity of aggregated models and avoids

TABLE II
COMPARISON BETWEEN THE RESULTS PRESENTED BY THE MODELS IN

THE CENTRALIZED AND FEDERATED APPROACHES.

Training
place

Train
loss

Validation
loss

Error
rate (%)

Accuracy
(%)

Raspberry I 0.0579 0.1598 4.7832 95.2168
Raspberry II 0.0632 0.1604 4.5116 95.4884
Centralized 0.0051 1.1854 18.4971 81.5029



XLII BRAZILIAN SYMPOSIUM ON TELECOMMUNICATIONS AND SIGNAL PROCESSING - SBrT 2024, OCTOBER 01–04, 2024, BELÉM, PA

Fig. 4. Comparing the validation accuracy presented by the SqueezeNet
model in traditional and federated approach.

overfitting local models. The accuracy of the models is shown
in Figure 4.

V. CONCLUSIONS

This study proposed a solution with applications in low-
income and remote areas with constrained devices. It uses
embedded devices supported by FL to train compact and
efficient local models. The study compares centralized and
FL-based training approaches using the SqueezeNet V1.0
neural network architecture to classify pneumonia. Our results
show significant improvements in metrics when comparing FL
training to a centralized approach. The results also indicate that
a better model generalization capacity is achieved using FL,
surpassing the centrally trained model’s results. Therefore, the
study offers a simple and cost-effective solution for pneumonia
detection in remote and low-income environments.

Future research directions could tackle the problems and
assess performance improvements when increasing the number
of embedded devices used to create the aggregated model. This
would probably attain more accurate models, making diagnosis
more accurate. Moreover, the proposed solution could be
integrated into smartphones and computers with interactive
and easy-to-use user interfaces, making it even easier to
use in remote locations. Another direction would be com-
paring different model architectures (such as MobileNetV1,
MobileNetV2, and even Squeezenet V1.1) and approaches to
dealing with gradient aggregation and class unbalancing, such
as data augmentation, over/under-sampling, and generative
models. Also, the environment worked on during the devel-
opment of the application does not point to possible adverse
scenarios such as connection problems, network latency, or
lower capacity networks. Therefore, future research should
be carried out to verify the application’s behavior in these
scenarios. Finally, a study of the network’s behavior during
training should be carried out, analyzing in detail how the
application impacts the network and how it behaves during
execution.
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