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Sketch guided face synthesis using conditional
variational autoencoder

Edson Odake and Eduardo Parente Ribeiro

Abstract—Forensic sketches, often the only visual leads in
criminal cases, typically lack the detail and realism that can
help in public identification tasks. This paper presents a Con-
ditional Variational Autoencoder (CVAE) approach for trans-
forming forensic sketches into photorealistic facial images. Using
a stochastic edge map extraction of images from a dataset,
our model bypasses the need for manually paired sketch-photo
databases, enhancing scalability. The model was evaluated on
several metrics, demonstrating the capability of working on
different image styles. When using the Facenet, the similarity
of generated images using the CVAE is 56.8% better than the
simpler AE.

Keywords— Conditional Variational Autoencoder, Photorealis-
tic Face Synthesis, Forensic Sketch, Image-to-Image Translation

I. INTRODUCTION

Forensic sketches, traditionally created from eyewitness
descriptions, are vital when direct information about a suspect,
such as fingerprints or names, is unavailable. These sketches
are typically compared against a database either manually
by experts or via face recognition technology. However, con-
verting these sketches into photorealistic images can enhance
accuracy and public engagement, leading to increased commu-
nity tips and suspect identification. Photorealistic images inte-
grate more seamlessly with digital technologies and databases,
including facial recognition software.

Despite advances in generative algorithms for creating
images from facial sketches, current methods often rely on
limited databases pairing sketches with original photos [1],
[2], a practice that lacks scalability and restricts style diversity.
Furthermore, existing models trained on unpaired images are
primarily evaluated on artificial or digital sketches [3], [4].
This evaluation fails to account for non-digital, hand-drawn
sketches, which limits the accuracy of the generated images
across more traditional forms of sketching. Another significant
gap in the literature is the absence of specific metrics to assess
the fidelity of the generated facial features to their original
counterparts.

This paper presents a generative model that transforms
facial sketches into photorealistic images. Unlike traditional
approaches, our model uses a stochastic edge map extraction,
avoiding the constraints of a narrow style range and enhancing
generalizability. We also provide a novel architecture com-
bining a Conditional Variational Autoencoder (CVAE) with
skip connections [5] and attention mechanisms [6] to improve
the generated image quality. Utilizing a CVAE, the generated
image captures essential conditional information such as skin
and hair color, compensating for details not provided by the
sketch.

Our model is trained on CelebA [7] database and validated
against a variety of previously unseen hand-free sketches,
ensuring robust performance across different artistic styles
representation. We evaluate the images using several percep-
tual metrics to verify the preservation of facial features. This
methodology broadens the practical applicability in fields such
as forensic and artistic uses, where flexibility in handling
different sketch styles is crucial.

II. RELATED WORK

The synthesis of photos guided by sketches is essentially an
Image-to-Image problem, which tries to optimize the mapping
between two domains. The most commonly used models for
this task are the VAE and GANs [8].

Nastaran Moradzadeh Farid et al [9] developed a sketch
to image GAN with impressive results, but the evaluation
was only applied to a single-style database. Yongyi Lu et
al [10] proposed a Contextual GAN using the sketch as a
weak contextual constraint. This method proved robust when
applied to ugly sketches but did not guarantee the identity
preservation of the image. Phillip Isola et al [11] provided a
Conditional GAN using a U-Net-based generator to translate
multiple styles of images, however, they focused on more
generic images.

Several GAN-based models were proposed more specifi-
cally for converting sketches to facial photos [12], [13], [14],
but their evaluation were limited to the same database used
to train the model. Jun Yu et al [15] went one step further
and evaluated the model on a variety of sketch styles, outside
the training database, which provided blurry but interesting
results. However, all of these models require paired images for
the training process. Mingming Hu [13] used the xDog filter
[16] to generate sketches from a facial photo and used it as
training input, which provided good results but didn’t evaluate
the model on real sketches. Other authors [17], [18] employed
the powerful StyleGAN pre-trained model and created a latent
space mapping using as input a sketch and a text description
ensuring appealing results, however, the evaluation was also
limited to the same database used for training.

The different styles between the training database and
sketches produced by several artists present a challenge for
generating a good image based on sketches. Yuhang Li [3]
achieved good results on ugly digital sketches. He approached
the problem using different methods to synthesize sketches
from the original photo. Shu-Yu Chen [4] provided an archi-
tecture centered on generating the facial components separated
(eyes, mouth, nose), by applying windows to encode and de-
code these features, achieving impressive results on free-hand
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sketches. However, their evaluation was limited to digitally
drawn sketches.

Xing Di [19] used a complex architecture combining CVAE
and GAN in a three-stage training process to achieve facial
photos from sketches. However, GAN-based models are dif-
ficult to train because of convergence problems and mode
collapse. In this work, we propose a simpler architecture using
a more robust CVAE with a more diverse preprocessing step,
making the model more suitable to achieve good results on
different style images.

III. METHODOLOGY

The proposed CVAE (Fig. 1) receives a 64x64 edge map
as input along with an array of attributes describing the face’s
features. The model uses skip connections [5] to preserve both
semantic and structural information about the initial image.
Residual connections are also implemented to improve the
model training [20].

An attention cell is added to the encoder before concatenat-
ing the skip connections with the encoder, to ensure that the
semantic and structural information are well aligned [6]. The
conditional information is positioned in both, the encoder and
decoder network, mostly to give information such as hair and
skin color.

The objective function is inspired by Irina Higgins work
[21], which provides a simple way to adjust the latent space
entanglement. The reconstruction loss chosen is the structural
similarity index measure (SSIM) [22] which provided better
empirical results when compared with pixelwise metrics like
MSE and PSNR.

To obtain a diverse training database a preprocessing
pipeline was created, producing different edge maps from
the original images. The parameters of the pipeline are set
stochastically to guarantee data diversity and the results are
evaluated across different unseen databases.

Decoder

Encoder

Image input
Image output

=== Skip connection I Flat layer I Latent space

Fig. 1: Final model architecture.

Residual
block

The main components of the proposed CVAE are:

o Residual block: Technique used to prevent vanishing
gradient by summing the input with the convolution
output, improving deep model training.

« Conditinal input: Contains 14 attributes selected from
CelebA database to control high-level features, like hair,
skin color, and smile.

o Skip connections: This method is used to concatenate
the encoder’s feature maps with the decoder’s, providing
structural information while generating the output image.

o Attention gate: Regularization method that combines
the skip connection with the decoder’s previous layer to
reconstruct the next layer.

o Flat layer: The flatten operation is applied after the
convolutional step to get a one-dimensional array.

« Latent space: Contains low dimensional features used to
reconstruct the output image.

A. Preprocessing pipeline

The first step is to extract edges from the images using the
OpenCV canny detector [23]. The extracted edges are often not
continuous and present several gaps. A morphological closing
operation (dilatation and erosion) is applied on the edge map
to fill these gaps while keeping the shape and width.

At last, the image passes through a Gaussian filter to thicken
the edges providing a more diverse edge width. Then, the
pixels are converted to a binary representation. The bina-
rization is useful to standardize stroke styles on the sketch.
The parameters of each step of the preprocess are selected
stochastically by randomly defining the thresholds of the canny
detector and the size of the Gaussian filter kernel for each
image, providing a diverse representation of the edge map.
Since the CVAE input is 64x64, the image is resized to fit
this shape.

B. CVAE Objective Function

An autoencoder (AE) consists of an encoder followed by
a decoder. The encoder maps high-dimensional data into a
low-dimensional space, maintaining important features. The
decoder takes this low-dimensional data and learns the reverse
map to the high-dimensional space.

The objective of the autoencoder is to achieve a perfect
reconstruction as output. There is no control over the latent
space, resulting in a non-continuous, entangled, and messy
space. The variational autoencoder (VAE) was introduced to
add regularization in the latent space, providing a smoother
and more stable space.

The Conditional VAE (CVAE) provides a secondary input
type, which is concatenated with the encoder and decoder. If
you’re working with animal image generation, the conditional
may be a one-hot encoded label representation, containing
the animal species. Since the sketch doesn’t provide color
information, it’s passed through a conditional input.

Figure 1 shows a CVAE abstraction. The CVAE loss func-
tion is given by [17]:

1
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In this equation, £ is the total loss function, y; and o; are
the mean and standard deviation of the Gaussian distribution

representing the encoder output. The posterior distribution
qo(z|x;) represents the encoder mapping from X domain to
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the Z latent space, given a sample x;. The decoder likelihood
distribution approximation is represented by pg(z;|2).

The first component is the regularization term. It measures
the Kullback-Leibler (KL) divergence between the encoder’s
posterior distribution gg(z|z;) and the prior distribution p(z),
which is a standard normal distribution (x = 0, o = 1). The
second component is the reconstruction term. It represents the
expected log-likelihood of reconstructing the input z; from the
latent variable z using the decoder. Here, E. g, (z|+;) denotes
the expected value with respect to the distribution gg(2|z;).

The regularization component is multiplied by 3 to balance
the trade-off between the latent space constraint and the
reconstruction accuracy in the CVAE [21]. This allows us
to control the emphasis placed on the regularization term
versus the reconstruction term. Additionally, the reconstruction
component is replaced by the SSIM loss as its closed form
[22]. Since the AEs only present the reconstruction loss, the
B is not applied, but the same SSIM loss is used as the
reconstruction component.

(2uapty + €1)(202y + c2)
(12 + p2 4+ c1)(02 + 02 + ¢2)

Where c¢; and ¢y are small constants that stabilize the
division with weak denominators.

SSIM(z, ) = )

C. Evaluation Metric Overview

A commonly used metric to evaluate how close two images
are is the mean square error (MSE):

n
MSE = % > @ — i) 3)
i=1

The SSIM can also be used. It is a perception-based model
that incorporates luminance and contrast masking. These meth-
ods are effective when the images are properly aligned. Images
generated using the edge detection from image dataset are well
evaluated with these simple metrics since the target image
is perfectly aligned with the edge map. However, images
generated with hand sketches are more difficult to evaluate
with these metrics. MSE is sensible to the slight change
in pixel position and the SSIM may get disturbed by color
differences, like the background.

The FID metric is chosen to provide an evaluation more
focused on image features instead of pixel-wise details. This
metric uses Inception V3 to extract a feature vector from the
image and calculate the Frechét Distance. FID is widely used
for evaluating the quality of images generated by GANS.

A more specific metric can be defined using Google’s
FaceNet model developed for face recognition. This model
provides state-of-the-art results in image recognition, being a
good choice for evaluating the similarity of the generated and
original faces.

D. Databases

The model is trained using the CelebA dataset [7], contain-
ing 202.599 facial images each image having 40 attributes.
The model is trained using 50k images and only attributes

containing color information are used. The images have a
218x178 dimension. Since the CelebA dataset doesn’t contain
hand-drawn sketches it would be unfair to evaluate the model
only using this base.
Two different styles of images are used to evaluate the
model and ensure good performance under unseen samples:
o CelebA: This dataset is used to check the performance
under unseen images with a distribution similar to the
training data;
o CUHK Student database: Includes the sketch of 188
asian students paired with the original photo. The sketch
dimension is 200x250;

IV. RESULTS

We provide a comparison between the proposed models and
a simpler implementation to justify the complexity. Figure
2 illustrates the training and validation loss across different
models. It’s important to note that the CVAE loss is different
from the AE since it also presents a regularization component.

Model Loss Comparison Model Validation Loss Comparison

—e— Simple AE Loss
Proposed AE Loss 054
—=- Proposed CVAE Loss

—e— simple AE Validation Loss
Proposed AE Validation Loss.
—a- Proposed CVAE Validation Loss.

Fig. 2: Training and validation history.

Figure 3 provides the quantitative results, enforcing the
superior result of the proposed over the simpler model. Figure
4 shows the original image, the extracted edges, and the image
generated using different models. The Simpler AE model
provides blurry and generic images which is improved by
using the Proposed AE and CVAE.

Simple AE @ Proposed AE  Proposed CVAE

MSE SsiM FID Facenet

CelebA metric comparison

Fig. 3: CelebA performance metric comparison for each model
on 10 samples (Metrics were scaled to the same perspective).

The same procedure is applied to the CUHK Student Base.
Figure 5 shows the importance of having conditional input to
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Fig. 4: CelebA image comparison

generate a more accurate color reconstruction. MSE, SSIM,
and FID provided similar results but the Facenet comparison
demonstrated the superiority of the proposed models over the
Simpler AE (Figure 6).

Figure 7 shows the transition while interpolating hair and
skin color attributes to illustrate the impact of the conditional
input on the generated images. The model demonstrates the
ability to change these features without altering other aspects
of the image.

The models were structured to have similar depths and
parameters, ensuring a fair comparison. Each model consisted
of multiple convolutional layers with 3x3 kernel sizes, fol-
lowed by batch normalization and ReLLU activation functions
to introduce non-linearity. The simpler AE architecture in-
cluded 13 layers. While sharing a similar core structure, the

_

(b) Original 2 (c) Original 3

(d) Sketch 1 (e) Sketch 2 (f) Sketch 3

(g) Simple AE 1 (1) Simple AE 3

(j) Proposed AE 1

(h) Simple AE 2

(k) Proposed AE 2
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Fig. 5: CUHK image comparison

proposed AE and the CVAE architectures included additional
layers for residual connections, attention mechanisms, and
conditional input processing, bringing the total to 26 layers.
These additions primarily serve to improve regularization. All
models were trained for 15 epochs (without early stopping)
with a batch size of 64, using the ADAM optimizer with
a learning rate of 0.001. Batch normalization was applied
after each convolutional layer to mitigate issues like exploding
gradients.

V. CONCLUSIONS

We developed a CVAE to generate images based on fa-
cial sketches and a few attributes. The model was trained
only on artificially synthesized sketches using edge detection
techniques among other preprocessing methods, and evalu-
ated across different style sketches. Despite being trained on
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Fig. 6: CUHK performance metric comparison for each model
on 10 samples (Metrics were scaled to the same perspective).
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Fig. 7: Attribute interpolation

unpaired images from the CelebA database and evaluated
on unseen CUHK data, our models achieved good quality
and coherence with the input, when compared to previous
models trained and evaluated with paired images from CUHK
database.

Contrarily from previous work, we provided unpaired train-
ing evaluated on hand-free non-digital images. We also com-
pared different metrics to measure the similarity between the
original and generated faces. When using the Facenet, the
similarity of generated images using the CVAE is 56.8% better
than the simpler AE, and 20.1% better than the modified AE.

These methods are expected to enhance investigative effi-
ciency by enabling quicker and more precise suspect identi-
fication, facilitated through seamless integration with digital
recognition systems.

For future improvement, it would be interesting to use Xdog,
HED, or Photoshop to extract more diverse edge maps. It
would also be interesting to add GAN loss to try to improve
the quality of the generated images.
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