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Prediction of Communication Signal Strength with
UAVs Using Artificial Neural Networks
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Abstract— Recognizing the importance of unmanned aerial
vehicles in urban traffic surveillance, this research proposes an
artificial neural network to predict Wi-Fi signal strength during
drone flights. The developed multilayer perceptron algorithm
utilizes input features such as altitude, elevation angle, terrain
type, distance to the controller, speed, and battery percentage.
For validation, the neural network’s outcomes were compared
with the Longley-Rice model. The achieved RMSEs of 1.95 dB,
2.93 dB, and 2.39 dB for rural, suburban, and urban regions,
respectively, highlight the multilayer perceptron as a promising
solution for signal strength prediction in drone flights.
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I. Introduction

Drones, categorized as Unmanned Aerial Vehicles (UAVs),
have become noteworthy due to their versatile applications in
various sectors such as agriculture and urban traffic manage-
ment [1]. They can be used to enhance connectivity in isolated
or disaster-impacted areas where conventional communication
infrastructures are difficult to establish [2]. Ensuring reliable
communication signals is crucial for drone operations, partic-
ularly in security operations such as real-time monitoring and
collision avoidance [3]. Also, it is important to optimize energy
efficiency and select appropriate modulation techniques and
communication protocols to preserve communication integrity
during drone flights [1].

Machine learning has emerged as a subfield of artificial
intelligence, enabling new methods for problem-solving. In
the context of drones, using machine learning techniques
is a promising and mostly unexplored area, offering many
opportunities for research and innovation. While traditional
propagation models provide satisfactory solutions for signal
strength prediction and network planning, applying machine
learning techniques could yield more accurate results in situ-
ations where one of the communication nodes is in constant
motion, due to their potential to process large volumes of data
with precision [4]. For this purpose, a multilayer perceptron
was developed to predict signal strength in drone flights. Ad-
ditionally, the Longley-Rice propagation model, implemented
through Radio Mobile software, was used for this purpose,
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allowing the accuracy of the machine learning algorithm to
be compared with a conventional propagation model.

II. Previous Works

The study conducted in [7] proposes the development of
an agricultural monitoring system through the integration of
drones, IoT, and LPWAN (Low-Power Wide-Area Network).
The research addresses the effectiveness of LoRaWAN (Long
Range Wide Area Network) technology in providing wireless
coverage in drone flights, evaluating the most accurate path
loss model for the scenario under analysis. The RSSI (Received
Signal Strength Indicator) measurement results demonstrated
coverage exceeding 10 km, indicating the effectiveness of
LoRaWAN in applications involving drones.

The irregular terrain Longley-Rice model and the ECC-
33 model were considered for calculating signal strength,
and although initially, satisfactory results were not obtained
with these models, refinements in the ITM model signifi-
cantly improved the accuracy of the obtained RSSI results,
demonstrating its suitability for coverage prediction in rural
environments [7].

Additionally, the performance of LoRaWAN was tested at
different flight speeds to quantify the impact of the Doppler
effect on data transmission. The tests indicated highly reliable
data transmission, particularly using a spreading factor of
12, which ensured a 100% packet delivery rate at all tested
speeds, while the performance of the spreading factor of 7
proved sensitive to speeds above 35 km/h. Overall, the research
conducted in [7] demonstrates the applicability of the Longley-
Rice model for predicting signal strength in drone flights,
especially in rural agricultural areas.

In the research presented by [5], an artificial neural network
(ANN) is proposed for predicting signal strength in drone
flights at higher altitudes. Data from regions with varying
levels of urbanization were collected using a smartphone
attached to a drone, which recorded signal strength and GPS
locations at altitudes of 10 m, 18 m, and 24 m, while the drone
maintained a fixed speed of 1 m/s.

For ANN development, the data were divided into training
(70%), validation (20%), and test (10%) sets. The network was
trained to predict ground-level signal strength based on aerial
measurements using latitude, longitude, and signal strength (in
dBm) as input parameters, with the predicted ground signal
strength as the output. The chosen ANN model included two
hidden layers with 10 and 7 neurons, respectively. Aiming
to optimize the neural network’s accuracy and the training
process to achieve an MSE of 0.001, the authors opted for a
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regression approach so that the network’s output represents a
continuous value of signal strength, classified into four signal
coverage quality categories: excellent, good, fair, and poor. The
results showed that the ANN successfully predicted ground-
level signal strength, achieving an average accuracy of 97%.
Additionally, measurements taken at an altitude of 10 m were
found to be more accurate than those taken at higher altitudes.
The found MSE values were 3.91% for 10 m, 4.20% for 18
m, and 4.51% for 24 m [5].

The study also compared the effectiveness of the neural
network in a rural environment and in an open space. The
results showed that location influences the accuracy of signal
prediction. The MSE was 2.82% in the agricultural location
and 2.4% in the open area [5].

The research presented in [6] introduces an artificial neural
network model for path loss prediction in urban environments.
This approach utilizes a multilayer perceptron, considering
activation functions such as the rectified linear unit (ReLU),
hyperbolic tangent, and logistic sigmoid.

Data were collected from two urban areas, named Area
A and Area B. The neural network configurations included
one hidden layer for both hyperbolic tangent and logistic
sigmoid activation functions, and up to 8 hidden layers for the
ReLU activation function, which proved more stable in deeper
networks. Configurations with varying numbers of neurons
were tested, and layers with more than 20 neurons showed
the most stable performance; thus, 40 neurons were used in
the hidden layer. The selected input parameters were frequency
(MHz) and distance (m) [6].

In dataset A, the hyperbolic tangent function achieved the
best performance, resulting in the lowest RMSE values at
frequencies of 3.4 GHz and 5.3 GHz. For the frequency of 6.4
GHz, however, the ReLU activation function showed superior
results [6].

The results obtained with the neural network were compared
to those from the COST-231 Hata propagation model. Com-
pared to the empirical model, the neural network demonstrated
an average improvement of 8.89% and 23.26% in accuracy in
Areas A and B, respectively [6].

In the study conducted by [9], a comparative analysis is
performed between traditional models (Okumura-Hata, Egli,
COST-231, and Ericsson) and an artificial neural network
(ANN) model for predicting signal loss in wireless communi-
cations involving drones.

The study employs a multilayer perceptron with three nodes
in the input layer representing transmitter-receiver distance,
transmission power, and altitude. The ANN varies the number
of neurons in the hidden layer from 31 to 39 in increments
of 2. Nine pairs of activation functions (logsig, purelin, and
tansig) are used, resulting in 45 networks for each run of
the algorithm, executed 20 times for a total of 900 trained
networks. Performance is evaluated using MSE, with weights
and biases adjusted for optimization [9].

Results show that for rural routes, the network architecture
9-39-4 (with purelin/tansig activation functions) achieves the
lowest MSE of 24.10 dB, while for suburban routes, architec-
ture 1-37-3 (with tansig/purelin functions) obtains an MSE of
8.36 dB. The correlation between ANN-predicted and actual

data is 0.75 for rural and 0.95 for suburban environments,
indicating superior accuracy in suburban areas [9].

When compared with traditional models, ANN models show
superior performance, with RMSEs ranging from 3.96 to 7.07
dB for rural routes and 1.22 to 6.16 dB for suburban routes,
surpassing the Egli, COST-231, and Ericsson models [9].
The literature review reveals that most comparative studies
on signal strength involving artificial neural networks and
conventional propagation models focus on basic models. In
this context, a key contribution of this study is the comparative
analysis between the Longley-Rice terrain model and the
multilayer perceptron, considering terrain characteristics in
signal prediction.

III. Methodology
A. Data Acquisition and Preprocessing

Telemetric data for this research project were provided
by the C-ISAFE laboratory at CARISSMA of Technische
Hochschule Ingolstadt. The Parrot ANAFI AI drone was
employed for data acquisition, and flights were conducted
in three regions of Germany, ensuring a comprehensive and
varied dataset. This project utilized telemetry data from 26
drone flights, with no pauses made during the flights, ensuring
that the trajectory covered in each flight was continuous. The
flights include the specifications listed in Table I.

TABLE I
Details of the drone flights.

Metric Rural Region Suburban Region Urban Region
Number of samples 14048 12453 13333

Maximum distance traveled (m) 240.64 259.09 578.88
Maximum height (m) 377.57 412.93 389.75
Minimum height (m) 103.73 123.41 108.31

The first step of preprocessing involved filtering outliers
from the telemetric data using a quartile statistical method-
ology. By focusing on the interquartile range (25th to 75th
percentile), values outside this central section were considered
outliers and excluded to ensure data integrity and accuracy.

To incorporate terrain type information into the neural
network, the Copernicus Land Monitoring Service (CLMS),
maintained by the European Union, was utilized. NUTS3
codes, which standardize regional statistics in the European
Union, were employed in this study. Data from three specific
regions identified by the codes DE211, DE219, and DE266
were selected for analysis. Each region exhibits distinct terrain
characteristics, contributing to the diversity of the analyzed
data.

For calculating the distance 𝑑 between the controller and
the drone, the Haversine function is utilized. Additionally,
the altitude of the flight is taken into account for a three-
dimensional distance calculation.

𝑑 = 2𝑅 arctan 2
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𝑅 is the radius of the Earth (approximately 6,371 kilometers),
𝜙1 and 𝜙2 are the latitudes of the points in radians, Δ𝜙 is
the difference between the latitudes, and Δ𝜆 is the difference
between the longitudes of the two points.

For calculating the distance considering the altitude of the
flight, it was considered:

𝑑3𝐷 =
√︁
𝑑2 + Δℎ2, (3)

where 𝑑3𝐷 represents the three-dimensional distance and Δℎ

denotes the difference in altitude between the two points.
To minimize the impact of instantaneous power fluctuations,

the average value of the signal strength, measured in dBm, was
calculated using:

Pm = 10
1

2𝑚+1
∑idx+𝑠

𝑖=idx−𝑠
wifi_signal𝑖

10 , (4)

where idx is the index of the sampled point, 𝑠 represents
half of the sampling interval, 𝑚 represents the number of
observations on one side of the sampled point, ensuring the
averaging is performed over 2𝑚 + 1 points, 𝑘 is adjusted to be
an odd number to ensure that the average is calculated over a
symmetric set of points around idx, and wifi_signal𝑖 are the
measured power values at the points around the sampled point,
covering the interval from idx − 𝑚 to idx + 𝑚.

B. Flight Route Simulation in Radio Mobile
The simulation process in Radio Mobile starts by establish-

ing the initial geographic point at the drone controller’s loca-
tion, which serves as a reference throughout the simulation.
Subsequent points, including latitude, longitude, and altitude
information, are then entered into Radio Mobile to simulate the
flight route. All sampled latitude and longitude points are used
to simulate the communication link, employing the Longley-
Rice model for point-to-point prediction.

The flight altitude for each point is calculated by subtracting
the terrain elevation above sea level from the point’s altitude
relative to sea level. The result of this calculation represents the
relative height above the terrain that was input for each point
in Radio Mobile. Latitude, longitude, and altitude information
is present in the telemetry data, while the terrain elevation data
are imported into Radio Mobile from SRTM data.

To accurately represent the communication parameters and
the drone’s specifications, the network properties in Radio
Mobile are adjusted, taking into account the technical spec-
ifications. The drone’s specifications include a transmission
power of 20 dBm and a frequency of 2.4 GHz, with both
the transmitting and receiving antenna gains set at 3.5 dBi.
Additionally, the receiver sensitivity is configured to -94 dBm.

For this research project, three flights were selected in
regions with different levels of urbanization to obtain results
considering varying levels of signal interference. Subsequently,
these same flights will be used in the neural network testing
phase to compare the results obtained with the two approaches.
The selection criterion for choosing the simulated flight for
each region was the flight length, with the longest flight
from each region being selected. In this context, the city of
Großmehring represents the rural region with a flight length

of 240.64 meters, Heustreu is an example of a suburban
region with a flight length of 259.09 meters, and Ingolstadt
is classified as an urban region with a flight length of 578.88
meters. The classification into types of environments was
based on the level of urbanization presented in each of the
cities in terms of urban coverage.

Radio Mobile uses the Longley-Rice propagation model to
calculate the signal strength at each flight point, recording the
Rx Level value in dBm or 𝜇V, which indicates the received
signal power. The obtained values consider the transmitted sig-
nal power, the inherent losses along the signal path, including
attenuation due to distance, obstructions, and interferences that
can affect signal quality.

C. Multilayer Perceptron
The neural network is structured as a fully connected

multilayer perceptron, consisting of three layers: input, hid-
den, and output. The input layer has ten nodes, while the
output layer has a single node corresponding to the Wi-
Fi signal strength. A correlation matrix was used to se-
lect input parameters for the neural network, aiming to re-
duce dimensionality and detect multicollinearity among vari-
ables. The telemetry data comprises 23 columns of features.
After applying the correlation matrix with a threshold of
0.70, the selected features included signal strength data, ter-
rain type (’landcover’), altitude (’gps_amsl_altitude’), eleva-
tion angle (’angle_phi’, ’angle_psi’, and ’angle_theta’), speed
(’speed_vx’, ’speed_vy’, and ’speed_vz’), battery percentage
(’battery_percent’), and distance between the drone and the
controller (’distance_to_base’).

The dataset was partitioned such that 70% (27,884 samples)
were allocated for training, 20% (7,967 samples) for validation,
and 10% (3,983 samples) for testing. This partitioning also
took into consideration the proportions of the regions under
analysis, analogous to the methodology employed by [5]. The
supervised training of the network utilized the backpropaga-
tion method for 500 epochs, in alignment with the research
conducted by [5]. Additionally, the early stopping process was
implemented to prevent overfitting, stopping the training when
the validation loss began to increase after 100 consecutive
epochs.

Collecting time-series received signal strength (RSS) obser-
vations and averaging them is a common practice to manage
RSS fluctuations. However, this approach is compromised by
the presence of outliers in the observations, which significantly
impact the averaging process and reduce its efficiency. In this
regard, the Z-score method, based on the median absolute de-
viation scale estimator, has been used to detect outliers [8]. For
this project, the Z-score normalization was selected to ensure
that the impact of outliers is minimized. Additionally, a 3-fold
cross-validation technique was used to evaluate the model’s
performance on different data subsets, reducing overfitting and
improving reliability.

The hyperparameter configuration was determined through
an exhaustive grid search to identify the optimal parameters
that maximize the model’s performance. Based on related stud-
ies, the tested combinations included the number of neurons in
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the hidden layer (ranging from 10 to 40), various optimizers
(ADAM, SGD, and NAdam), and activation functions (ReLU,
Sigmoid, and Hyperbolic Tangent), with learning rates varying
between 0.1 and 0.0001. The optimization results for the
MLP model indicated that the optimal hyperparameters are 10
neurons in the hidden layer, the ADAM optimizer, a sigmoid
activation function, and a learning rate of 0.01.

The training phase of the multilayer perceptron was executed
twenty times, and the average values were used to determine
the best training and validation loss metrics. After training,
the model achieved an average validation loss of 0.24 and
a training loss of 0.18. The small difference between these
values indicates a strong ability to generalize to unseen data.
The weights were randomly initialized, and the Mean Squared
Error Loss function was used as the loss function.

To perform inference with the trained neural network, data
from the same three flights in rural, suburban, and urban
regions, previously used in the simulations employing the
Longley-Rice model, were utilized.

IV. Results
For predicting signal strength using the Longley-Rice model

and the multilayer perceptron, metrics such as relative error,
Root Mean Square Error (RMSE), and Mean Absolute Error
(MAE) were used, as these are the main metrics for evaluating
neural network performance.

The RMSE calculations was computed as:

RMSE =

√√
1
𝑛

𝑛∑︁
𝑖=1

(𝑌𝑖 − 𝑌𝑖)2, (5)

where 𝑛 represents the total number of observations, 𝑌𝑖 is the
actual value of the 𝑖-th observation, and 𝑌𝑖 is the model’s
predicted value for the 𝑖-th observation.

MAE values are given by:

MAE =
1
𝑛

𝑛∑︁
𝑖=1

��𝑌𝑖 − 𝑌𝑖
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and the relative error was calculated as:

Relative Error =
1
𝑛

𝑛∑︁
𝑖=1

|𝑌𝑖 − 𝑌𝑖 |
|𝑌𝑖 |

. (7)

The results obtained with the simulation in Radio Mobile
using the Longley-Rice terrain model are shown in Table II.

TABLE II
Error metrics by region using Longley-Rice model

Region Relative Error (dB) RMSE (dB) MAE (dB)
Rural region 5.05 8.23 6.04

Suburban region 8.16 10.88 8.74
Urban region 11.54 12.84 11.31

The results obtained with the multilayer perceptron are
shown in Table III.

Figures 1, 2, and 3 illustrate the results obtained considering
the distance between the receiver and the transmitter as a
reference.

TABLE III
Error metrics by region using MLP

Region RMSE (dB) MAE (dB)
Rural region 1.95 9.89

Suburban region 2.93 7.77
Urban region 2.39 7.99

Fig. 1. Signal strength as a function of distance for rural areas.

In the rural region, the results shows the lowest relative
error, RMSE, and MAE values among the regions, indicating
higher accuracy and smaller deviations in the simulations
compared to actual drone flight measurements. The signal
strength decreases with increasing distance, as expected, with
the Longley-Rice model showing reduced dispersion and con-
sistent results. The MAE is 6.04 dB, reflecting a small average
deviation from actual values due to fewer elements causing
signal interference in rural areas.

The multilayer perceptron model aligns more closely with
the measured values, demonstrating greater accuracy than the
Longley-Rice model, especially beyond 100 meters, offering
superior correspondence with the measured data.

Fig. 2. Signal strength as a function of distance for suburban areas.

In the suburban region, the Longley-Rice model results ex-
hibit intermediate relative error, RMSE, and MAE values when
compared to rural and urban areas. Signal strength variations
in the suburban area are more pronounced due to increased
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interference from buildings, vegetation, and varied topography.
The Radio Mobile software, utilizing the Longley-Rice model,
predicts signal strength trends that generally follow the actual
drone measurements, albeit with some discrepancies arising
from model assumptions and simplifications. Conversely, the
multilayer perceptron predictions align more closely with the
actual drone measurements, demonstrating superior accuracy.

The actual drone measurements exhibit greater variability
due to environmental factors like buildings and trees, which
cause signal reflections and scattering. Overall, the multilayer
perceptron model provides predictions that match the actual
data more closely than the Longley-Rice model, suggesting its
better suitability for the suburban environment.

Fig. 3. Signal strength as a function of distance for urban areas.

In the urban region, signal strength declines gradually with
distance due to the consistent influence of urban topography.
Radio Mobile’s predictions significantly differ from actual
drone measurements, highlighting the Longley-Rice model’s
limitations in urban settings. Environmental factors like build-
ings and trees cause considerable variability in measured sig-
nal strength. While Radio Mobile’s model indicates a decrease,
it often overestimates values, especially beyond 100 meters.
The multilayer perceptron model aligns more closely with
actual measurements, accounting better for urban variables
and providing more realistic WiFi signal strength predictions.
Despite slight overestimations, it is more reliable for practical
applications in urban areas.

The comparative analysis between WiFi signal strength
prediction models reveals that the multilayer perceptron model
aligns more closely with the real values measured by drones
compared to the Longley-Rice model. While the Longley-Rice
model tends to overestimate signal strength, the multilayer per-
ceptron model shows a more accurate correspondence with the
real measurements, despite also displaying a slight tendency
to overestimate.

The real drone measurements exhibit significant variability
due to interferences and obstructions such as buildings and
trees, which are not fully captured by the predictive models.
Therefore, the multilayer perceptron model is more suitable
for predicting WiFi signal strength in the three regions, as it
better captures the complexities and environmental variations
typical of the analyzed areas, adjusting more precisely to the

changes in signal strength caused by physical obstacles and
interferences present in the environment.

V. Conclusion and Future Work
The observed discrepancies between the outcomes generated

by the Longley-Rice model and the telemetry data acquired
from drone flights underscore the necessity for developing
more precise methodologies for predicting signal strength dur-
ing drone operations. In this regard, artificial intelligence tech-
niques emerge as a promising alternative for such predictions.
The RMSE values obtained indicate that the Longley-Rice
model consistently overestimates received power, inadequately
accounting for signal interferences and obstructions.

Future research should focus on acquiring a more robust
and diverse dataset to improve the multilayer perceptron
algorithm’s generalization. Additionally, exploring machine
learning methods like Random Forest and Support Vector
Machine could be beneficial in high-noise scenarios. Another
promising direction is using the signal strength prediction
algorithm to optimize and predict drone flight trajectories,
enhancing resource utilization and energy efficiency in UAV
operations.
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