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Abstract— The constant false alarm rate (CFAR) detection
theory maintains good decision performance over statistical
interference. For imagery applications, this class of detectors
increases the processing complexity due to the element-wise
matrix multiplication performed for each pixel resolution. Hence,
the largest collected dataset implies computational float-point
operations (FLOPs) with squared growth order, which end up
compromising its performance under real-time requirements and
power consumption constraints. To make CFAR processing a
workable solution for general-purpose devices, enabling it for
several emergent embedded technologies, this article presents
a dynamic random forest regression to predict the parallel
processing performance on cell-average CFAR. In this method,
the distributed data parallelism performance through CPU and
GPU cores can be dynamically predicted over time, enabling
evaluation of convergence to higher energy efficiency and lower
runtime processing. As a result, for large FLOPs demand over
an energy budget, the obtained predicted discharge consumption
slopes over processing runtime demonstrate higher efficiency
on GPU cores and their remaining capacity for processing and
consumption.

Keywords— CA-CFAR, runtime processing, energy saving, par-
allel processing, dynamic prediction.

I. INTRODUCTION

Matrix multiplication with non-trivial implementation
achieves the time complexity of O(nlog2 7) with the classical
Strassen algorithm [1]. In computational systems, the effect
of this complexity can be measured in float-point operations
(FLOPs), which consists of the number of multiplications
and summations required in matrix-vector operations for the
input data-set size (n) [2]-[3]. From the last decade, high-
performance computing demands for machine learning and
data science have stimulated efforts in the development of
optimization kernels for algebra libraries like the Basic Linear
Algebra Subprograms (BLAS) and the Linear Algebra PACK-
age (LAPACK), to increase their computational speed [4]. At
the same time, improvements in the hardware parallelism ar-
chitectures, based on multi-core central processing unit (CPU)
and graphics processing unit (GPU) have determined the
demand for power computation in software-based applications
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running in General Purpose devices, enabling real-time and
low-consumption requirements.

Particularly, in signal processing applications, element-wise
matrix multiplication (Hadamard product) is a common oper-
ator for image filtering, where each item or cell in a matrix
is multiplied point-to-point with cells of another matrix to
produce an output matrix of the same size. In spite of lower
complexity, O(n2), compared to matrix-matrix products and
matrix inversion operations, element-wise matrix multiplica-
tion employed in image processing usually involves very
large input dimensions, requiring a design of efficient and
low-complexity algorithms to process the required number
of floating-point operations. The constant false alarm ratio
(CFAR) test in radar target detection is a high-parallelized
application also subject to optimizations, on which adaptive
processing maintains the optimal detection performance. For
homogeneous clutter statistics, the cell-average CFAR (CA-
CFAR), defined in [5], presents the simplest solution to decide
on target presence, involving element-wise matrix multiplica-
tion computed on a kernel of data by pixels following for
fewer cost operations like sums and comparisons.

In such processing, higher-resolution acquisition sensors
provide complexity growth and make this problem difficult
to treat under computational restrictions. Some authors have
explored the reduction of processing operations [6] but with
the reduction in the parallelism power in hardware imple-
mentation. Strictly considering the hardware implementation
for parallel processing, [7], [8], [9], and [10] show solutions
to improve the runtime and the power consumption as the
most relevant point in comparative performances. However,
the available studies do not introduce any predictive model for
hardware efforts over a period of time, where the processing
and power demands may suffer variations. In this sense,
time series forecasting is a dynamic prediction method to
anticipate the system’s performance analysis. The class of
well-experimented autoregressive methods, such as autoregres-
sive moving average (ARMA) and autoregressive integrated
moving average (ARIMA) is widely applied [11], but such
approaches are not effective under large datasets or robust to
outliers of weak signal measurements. Such restrictions can
be overcome by dynamic regression models based on deci-
sion trees, such as random forests (RF) [12], where efficient
solutions for accuracy and computational complexity for time
series have been obtained [13]-[14].

Under these circumstances, in this work, the parallelism for
CA-CFAR filtering includes arithmetic throughput and energy
consumption as a restriction. A time series forecasting is built
in a dynamical random forest regression, where the training
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and prediction steps are dynamically adjusted to ensure a high
level of accuracy in online operation. The main contributions
of this article are: (i) computational complexity and power
consumption time series prediction for CFAR processing with
parallelism; (ii) trade-off analysis for distributed data paral-
lelism in the growth of element-wise matrix multiplication on
GPU and general-purpose CPU; and (iii) dynamic updating
method on statistical learning for minimum MSE.

The remainder of this article is organized as follows. Sec-
tion II presents the optimal detection based on CA-CFAR and
its complexity. In Section III, a parallel approach to computing
the matrices multiplication on CA-CFAR is adjusted into a
predictive dynamic model. Section IV shows experimental
results with specific CPU and GPU systems. Finally, Section V
presents the conclusions.

II. CA-CFAR ALGORITHM AND COMPLEXITY ANALYSIS

The target presence in a homogeneous background can be
detected by using a hypothesis test, such that the background
statistics are modified under the alternative hypothesis H1, and
the null hypothesis H0 determines the observations y as part
of the background distribution. For this purpose, a widely used
detector is the likelihood ratio (LR) test [15], where the LR
statistics are tested as

Λ(y) =
p(y|H1)

p(y|H0)

H1

≶
H0

γ, (1)

where the threshold γ is a constant value from the null
distribution of Λ(y), p(y|H1) and p(y|H0) are the probability
density functions of y under H1 and H0, respectively.

The detection performance in the LR test depends on the
level of signal separation achieved (under H1), influenced by
the background model approximation. Usually, homogeneous
clutter is characterized by Gaussian, exponential, log-normal,
K, gamma, and G0

A distributions [16]. In addition, the CFAR
filtering provides the threshold adaptation, γk, for expected
local interference through the dataset size K ∈ {1, . . . , k}.
Therefore, the maximum probability of detection (PD) for a
constant probability of a false alarm (PFA) is ensured. In
the CA-CFAR algorithm, this interference is homogeneous,
and its power estimation is computed in terms of the average
of the surroundings test cell and a multiplier α for false
alarm probability that attenuates or amplifies the detection
threshold [17], i.e.,

α = NC(P
− 1

NC

FA − 1), (2)

where NC is the number of neighboring cells.
The CFAR property is established by maintaining a constant

false alarm according to the NC . Fig. 1 shows the CA-CFAR
structure, where the unit to be tested is the Cell Under Test
(CUT), the cells used for estimation of the interference are
Reference Cells (RC), and the cells between the CUT and the
RC are the Guard Cells (GC). CFAR window shifts through
the range-Doppler data and tests each cell for a target. A target
is detected if the signal strength of CUT is greater than clutter
strength.

The computational complexity is summarized for a data
matrix having NR and ND cells along the range and

Doppler axes, respectively, where the naive technique is given
by O(NRNDNRCNGC). In terms of FLOPs, there is one
element-wise product NRC ⊙ NGC for each NRND pixels,
resulting in NRND

(
1
2N

2 + 1
2N

)
FLOPs [4], [6], where N is

due to the equal dimension size of the reference cells NRC

and guard cells NGC , that depends of the target resolution.
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Fig. 1: The flow of a typical 2D CA-CFAR algorithm.

III. AN ENERGY-EFFICIENT PARALLELIZED APPROACH

The high runtime processing in CA-CFAR is due to
element-wise matrix multiplication to compute the average
background statistics. An effective filtering performance over
the naive product depends on the parallelism in hardware.
Since then, the conventional serial computation across the
CPU cores is strongly dependent on power computation and
memory access with current technology. In parallel processing
the computation is distributed to simultaneous execution by
a set of cores, reducing drastically the runtime, when the
computations are potentially parallelized.

A. Distributed Data Parallel

Among existing solutions for parallelism, distributed data-
parallel (DDP) is a dominant strategy due to its minimally in-
trusive nature and ability to speed up some processing on large
datasets. This technique replicates the model on every compu-
tational resource to generate gradients independently and then
communicates those gradients at each iteration to keep model
replicas consistent [4]. PyTorch data parallelism is a package
distribution that offers several tools to facilitate distributed
processing, including the DistributedDataParallel
module, being appropriated to start sub-tasks in distributed
cores at the same time [18]. The sub-tasks are managed by
AllReduce operation, which collectively applies a given
arithmetic operation to input tensors (input data) from all pro-
cesses and returns the same result tensor to each participant.
The number of processes for distribution through the cores
includes an overhead, which for small datasets the parallel
operation cannot be efficient. However, for large datasets, this
overhead is negligible.

In terms of the computational performance, the computa-
tions and memory accesses are bounded as a function of arith-
metic intensity in FLOPs/bytes combined with the arithmetic
throughput, in FLOPs per second (FLOPS), which describes
the expected runtime performance and system occupancy de-
mands for parallelism structure. Note that the involved power
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consumption is a hardware-dependent variable of system ar-
chitecture, where parallelism has a strong influence.

B. Dynamic Model for Energy Prediction

Dynamic predictions are usually built into time series to
forecast future values over a period of time. Large datasets,
as provided for high sampling data, and weak signal measure-
ments, which are subject to outliers and non-linear relation-
ships, represent a limitation for well-experimented time series
forecasting methods. An attractive time series modeling has
been implemented on RF learning method [13], being robust
to outlying observations and more efficient with respect to
computational complexity, than other techniques.

RF is an ensemble of unpruned classification or regression
trees created using bootstrap samples of the training data
and random feature selection in the decision tree induction.
Prediction is done by aggregation with a weighted vote (in
classification) or weighted average (in regression) of the
ensemble outputs. The method builds an extensive collection
of de-correlated and randomized regression trees leading to a
dissimilarity measure between the observations [19]. Suppose
that we have a sequence {Xt, Yt}t∈Z, where Yt ∈ R is
the response (target) and Xt ∈ Rp is a set of p regressors
(features), such that

Yt = f(Xt) + ϵt, (3)

where ϵt is stochastic error such that E[ϵt] = 0,∀t. The
purpose of random forests is to estimate, by only observing
a dataset Dn = ((X1, Y1)), . . . , (Xn, Yn), the regression
function

f(xt) = E[Yt|Xt = xt],∀xt ∈ Rp. (4)

The regression involves the following recursion: (1) From
the training data, draw randomly a number of observations
with bootstrap per tree with or without replacement; (2) For
each bootstrap sample, grow a tree with the best split among
a randomly selected subset of mtry descriptors. The tree is
grown to the maximum size; (3) Repeat the above steps until
a sufficiently large number of outputs. When mtry = p, i.e.,
the best split at each node is selected among all descriptors.

The adaptation of the RF for the time series is defined
through the autoregressive model over the regression structures
in the following way

Yt = f(Xt, Yt−1, Yt−2, . . . , Yt−p) + ϵt, (5)

where the arbitrary time step t is determined by using a
combination of the p last observations. The simplest method
for time series RF is based on non-overlapping block bootstrap
(NBB), where the dataset is transformed into supervised learn-
ing using this sliding-window representation. In this method,
the bootstrap set D∗

n is then obtained by drawing K blocks,
(B∗

1 , . . . , B
∗
k), uniformly with replacement in the collection

of non-overlapping blocks (Bb)1≤b≤B for a suitably chosen
k, where ℓn block size and B ≥ 1 the greatest integer such
that ℓnB ≤ n.

Bb = (Y(b−1)ℓn+1, . . . , Ybℓn), (6)

where b = 1, . . . , B.

In the proposed model for energy prediction, the set of
observable variables is the combined hardware efforts based
on the power consumption, in Watts (W), and the arithmetic
throughput, in FLOPS, demanded by the CPU or GPU. The
parallelism distribution determines the costs of energy and run-
time to perform all the required FLOPs for CFAR processing.
The continuous hardware measurements feed the time series
predictor, where the RF structure is split into training and
testing data for each region separately, reproducing the NBB
method. This modeling is extended to adjust the region size
for the range of accurate prediction, as defined as follows:

Proposition 1 (Block Adaptive Random Forest time series):
Let a response variable Y = (Y1, . . . , Yn) be split in K
consecutive blocks of length ℓ. Then, we can rewrite
Y = (B1, . . . , Bk) with Bb = (Y(b−1)ℓ+1, . . . , Ybℓ) non-
overlapping blocks, being each block subject to bootstrap
set D∗

n. If ℓ is separated in training length, ℓtr, and testing
length, ℓts, we can obtain the prediction Ŷ for the next
(Y(b−1)ℓtr+1, . . . , Ybℓtr ) samples. For each training sliding-
window, the block length ℓtr and ℓts are determined under
the prediction performance, i.e,

ℓ=ℓtr︷ ︸︸ ︷
(Y(k−1)ℓ+1, . . . , Ykℓ) = Ŷ ≈

ℓ=ℓts︷ ︸︸ ︷
(Y(k−1)ℓ+1, . . . , Ykℓ) = Y

(7)

such that{
ℓ0tr → (initial block length) if (Y − Ŷ )2 ≤ δ

ℓ∗tr → (block length increment) otherwise.
. (7a)

Given the initial training block length ℓ0tr, the time series
prediction dynamically draws the block length for training and
testing according to the previous performance rule, where a
predefined mean square error (MSE) is established with δ. □

The block diagram in Fig. 2 extends the Proposition 1
to predict the energy consumption with different distributed
parallelism processes. The details for CA-CFAR processing
demands and its dynamic operation are described as follows.

1) The DDP selects the core elements to break the input
CA-CFAR matrix product processing. Then, the time se-
ries forecasting is fed with the hardware measurements,
where the power consumption, in terms of battery life,
is evaluated in the runtime to process all the FLOPs
demand.

2) By considering an energy budget, the initial block length
setup ℓtr and ℓts are adjusted under reduced battery dis-
charge (in percentage), which depends on the parallelism
setup and processing demand. Therefore, the collected
data in this interval are used to predict the next discharge
window.

• If the predicted energy Êt compared to the update
Et observations obeys the MSE criterion, the initial
block length is kept;

• Otherwise, the NBB is balanced by increasing the
training length, ℓtr.

The online prediction advances through the incoming mea-
surement samples for a relatively large dataset, where the
remaining energy budget decays in a minimum state of charge.
In such a prediction, parallelism efficiency can be evaluated
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Next block training: Bb ∈ ℓ0tr = ℓ0ts if MSE is achieved

Fig. 2: Distributed parallel processing for multicores and the
dynamic RF regression prediction.

quantitatively to extend the battery life under the best compu-
tational performance.

IV. EXPERIMENTAL RESULTS

To provide an effective CA-CFAR implementation on
general-purpose devices, the computation of element-wise
matrices multiplication used in such filtering process was
parallelized with Pytorch package, where parallel sub-
processes are applied to distribute the overall computation.
Firstly, we employed the parallel approach through multi-
core CPU1, then in a graphic card GPU2. The hardware
performance measurements are performed using the Linux-
based monitor tools htop, powerstat, and nvidia-smi
perf in which the collected 1 second samples of CPU/GPU
cores usage, memory access, and power consumption are made
available for prediction. In the experimental campaigns, we
selected different numbers of CPU threads (1, 12, 24) to verify
the achieved runtime and the consumption, as the input dataset
was made large. This experiment was replied to through
the dedicated (64, 512) GPU cores, where the comparative
parallelism performance was evaluated.

For a given energy budget3, we can build a time series
prediction subject to available cores in parallel processing
to estimate the remaining battery charge over the FLOPS
throughput. Then, the time series in Proposition 1 is used for
forecasting the collected energy consumption and FLOPS as
a function of the number of cores in parallelism. In the static
prediction on RF, using all dataset, the FLOPS is selected as

1The CPU is based on a high-performance processor Intel Core i9-12900KF,
16-Core, 24-threads, with the clock of 3.2 GHz and 32 GB DDR5 of memory

2Graphic card GPU NVIDIA GeForce GTX 1630, 512 shading units
(cores), 32 texture mapping units, and 16 ROPs, with the clock of 1740 MHz
and 4 GB GDDR6 of memory

3For reference we consider a Lithium-ion battery for a laptop, model H-
HT03XL with 3615 mAh (41.7 Wh) and 11.55 V.

TABLE I: Random Forest Regression performance by input
features over time.

Input features over time Random Forest Regression
R-Squared MSE MAE

CPU Cores, FLOPs 0.9978 87.2629 6.2015
Battery (%), CPU cores 0.9852 52.2315 5.1524
Battery (%), CPU cores, FLOPs 0.9437 104.3046 7.5771
GPU Cores, FLOPs 1 20.4178 4.5062
Battery (%), GPU cores 1 11.2621 3.3171
Battery (%), GPU cores, FLOPs 1 11.4413 3.2661

NOTE: We present the performance for runtime prediction in RF regression by different
features input in the reduced energy budget evaluation.

(a)

(b)

Fig. 3: Random Forest Regression performance using all
related features over time: (a)using CPU cores, and (b) using
GPU cores.

the time reference and target variable, and the features list
includes the battery discharge and cores amount (for CPU and
GPU technologies). The results of regression in terms of R-
Squared (R2), MSE, and mean absolute error (MAE) using
the function RandomForest in R language is summarized
in Table I illustrated in Fig. 3.

For the time series approach, the initial training step consid-
ers the first 5% of battery discharge over minimum parallelism,
where the length of blocks for training and testing are adjusted
for the target MSE. In such a situation, we can predict
the energy consumption for the next 3% of discharge from
actual 1%. By moving to the next prediction block, we can
dynamically predict the energy consumption for a wider range
of discharge percentages, since the MSE criterion is obeyed.
This process is continuously repeated to achieve the limit
for FLOPs demand in CA-CFAR matrix multiplication or the
battery discharge is full.

The results presented in Fig. 4a give us a separate analysis
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(a) DDP with CPU (b) DDP with GPU

Fig. 4: Prediction of parallelism performance of CA-CFAR FLOPS with dynamic time series through 5% of battery discharge.

of parallelism by CPU threads, where the limits of NrNd

pixels for N × N matrix element-wise multiplications are
computed. As observed, if more cores are employed in the
parallel processing, the convergence to the energy efficiency
is achieved and the largest dataset can be processed by CA-
CFAR in the shortest runtime. In Fig. 4b, the prediction was
extended to GPU cores, where the parallel robustness was
achieved through the 512 cores. In this scenario, the power
to process the matrices at lower energy consumption was
8× better than the maximum threads in the CPU system.
Furthermore, the dedicated operations performed in GPU
with multiple cores are efficient in repeating the N × N
multiplications. Since the N×N matrices depend on the target
size, typically its dimension is tractable for GPU cores, here
we considered N = 30.

The discharge slops shown in Fig. 4 are dynamic predictions
that use online hardware measurement samples under reduced
budget space, the throughput FLOPS jointly with the discharge
of the battery is able to forecast the remaining discharge
progress, given a specified prediction error over the demands
for CFAR processing. As expected, the longer prediction space
can be adjusted as more training elements become available.

V. CONCLUSIONS

The squared growth of complexity on element-wise matrix
multiplication in CA-CFAR processing could be effectively
performed under a distributed data-parallel approach. The
FLOPs demand by increasing dataset input was balanced over
CPU and GPU multicores architectures, achieving effective
runtime and lower energy costs. Under parallelism, demanded
FLOPS for execution and their energy consumption were
effectively predicted by dynamic RF regression, where the
large input dataset or outliers were not limitations. In this
prediction, the expected hardware efforts performance is a dy-
namic process that determines the maximum dataset size that
the parallelism structure supports to perform over an energy
budget. The tests performed with the time series predictor
under a sample of battery discharge (5%), 256 GPU cores
were 8× most effective than high-performance CPU 24 cores,
where 3% were predicted at lower MSE. This prediction can
be extended to estimate the remaining capacity for processing,
given a dataset demand.
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