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Abstract— This work presents a purpose to accelerate the
design process of mmWaves filters for 5G applications. To aim
this objective, this work makes use of a technique of an artificial
neural network called the multilayer perceptron. The model
has 4 outputs and 6 inputs, where 2 outputs have a strong
correlation and the other two have a weak correlation. By using
1000 samples, the model achieves an accuracy value of 0.927 for
the outputs with strong correlation, but despite the good result,
the predicted model still needs improvement, since |S11| had a
not-so-nice performance.
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I. INTRODUCTION

5G technology presents a significant revenue opportunity
for consumer services, as demonstrated in [1]. Globally, the
total mobile data traffic is projected to reach 325 exabytes
(EB) per month by 2028, which is approximately four times
the amount recorded at the end of 2022 when mobile data
traffic stood at 90 EB, as reported in [2]. To shed more light
on how 5G can contribute to revenue, a survey conducted
by [3] involving 3,000 consumers revealed that over half of
the respondents were willing to pay more for the benefits
of 5G. This demonstrates that the cost is not a prohibitive
factor for adoption. This is due to the fact that 5G enhances
user experiences for applications demanding high data traffic,
security, and low latency.

While the millimeter wave (mmWave) range spans 30 GHz
to 300 GHz, companies are terming the higher frequencies (≥
24 GHz) within this range as ’5G mmWaves’. This nomen-
clature arises from their proximity to the mmWave range and
similar benefits, such as higher data rates. However, these fre-
quencies suffer from path loss, limiting their range and making
them suitable for short distances, which enhances security and
privacy. Due to the high frequency, circuit components must be
smaller than the wavelength, necessitating a distributed circuit-
element approach[4].
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Specialized software like Advanced Design System (ADS)
and Ansys EM is crucial for designing mmWave components.
ADS uses approximate methods for faster results, while Ansys
EM employs full-wave electromagnetic analysis for more reli-
able data. Simulating component responses efficiently remains
a challenge, with machine learning techniques offering a
potential solution.

Machine learning is characterized by its capacity to learn
from the environment. It’s a computational algorithm branch
addressing various problems, including finance, entertainment,
medical applications, and more. Machine learning adapts its
architecture through generations, producing superior results
without ’hard code’. Artificial Neural Networks (ANNs), a
subset of machine learning, simulate biological learning th-
rough interconnected neurons. These neurons compute func-
tions using input data and weights, enabling learning when
connected with other neurons [5], [6], [7].

This study aims to create a 5G mmWave interdigital filter for
the 26GHz to 28GHz range, utilizing the ROGERS RT/duroid
6006 substrate. Initial results will be obtained via Ansys EM
analysis, followed by utilizing an artificial neural network to
determine the filter’s dimensions based on S parameters.

II. FILTER MODELING USING NEURAL NETWORK

In this section, will be explained briefly about neural
network and the interdigital filter design process.

A. Neural network

Neural networks, inspired by the natural learning mecha-
nisms, employ artificial counterparts called perceptrons [8].
Within living organisms, neurons form the foundation of
neural networks, comprised of three essential components: the
cell body, dendrites, and axon. Dendrites act as signal receptors
from nearby neurons, while axons convey these signals. The
point of connection between an axon terminal and a dendrite
is referred to as a synapse (refer to Figure 1 for visualization).
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Fig. 1: Biological neuron: three main parts. Based in [7]

The artificial representation of neural networks was in-
troduced with the development of perceptrons, a type of
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artificial neuron. Perceptrons receive binary inputs or features
(x1, x2, ..., xn) to generate a single binary output. Each
input is assigned a weight (w1, w2, ..., wn) that determines
its importance for the desired output. In an artificial neural
network with multiple layers of perceptrons, the output of one
perceptron can serve as the input for another, governed by the
assigned weights. This mechanism mimics the role of synaptic
connection strengths in biological organisms.

The predicted output of a perceptron can take values of 0 or
1, determined by a weighted sum (

∑
j wjxj) and a threshold

value. This process is illustrated in Figure 2a. In some systems,
additional components called biases are introduced to enhance
prediction accuracy. Biases help the model better adapt to
various situations.
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Fig. 2: Perceptron definition

The learning process in artificial neural networks (ANN)
revolves around altering the weights connecting neurons. This
process is stimulated by training data, encompassing pairs
of input and corresponding output. In biological organisms,
incorrect reasoning triggers an unpleasant response; similarly,
in neural networks, the training data evaluates the weights
based on the discrepancy between predicted and actual output,
striving to minimize this discrepancy. The mechanism to mini-
mize this disparity is termed the loss function. The process of
comparing predicted and target outputs and adjusting weights
accordingly is called backpropagation [7].

To evaluate the predictive precision of a developed model,
the mean squared error (MSE) is a commonly employed metric
( 1
n

∑
(yi−f(xi))

2), wherein ’n’ represents the total number of
observations, yi signifies the target output, and f(xi) indicates
the predicted value. This measure is typically computed on the
test dataset. The construction of an Artificial Neural Network
(ANN) model entails partitioning the dataset into two subsets:
the training data, where the learning process unfolds, and the
testing data, utilized to assess the model’s accuracy.

Nevertheless, while this approach offers insights into model
performance, it can falter if the training data exhibits an
uneven distribution of specific cases. This can lead to skewed
learning and hinder the model’s ability to generalize. To
counteract this challenge, alternative techniques like cross-
validation leverage data resampling methods. A prominent ap-
proach is k-fold cross-validation, where the dataset is divided
into ’k’ subsets or folds. In each iteration, one fold is set aside

for testing while the remaining folds contribute to training.
This procedure is repeated ’k’ times, and the average MSE
across iterations provides the comprehensive score—a method
known as k-fold cross-validation [7] [9].

Activation functions play a pivotal role in the transformation
of inputs to outputs within neural networks. This process
begins by calculating the sum of weighted inputs, which is then
passed through an activation function. The importance of this
function lies in its ability to shape prediction accuracy. Without
it, the output remains linear, constraining the network’s capa-
city to handle intricate data mappings. Activation functions
come in two types: linear and non-linear, with the latter
being more widely embraced due to their effectiveness in
accommodating real-world non-linear error patterns [10].

Figure 3 showcases a range of activation functions, each
chosen based on specific criteria. In the context of multi-
layered neural networks, non-linear functions such as step,
sigmoid, or tanh find preference. When prioritizing genuine
prediction goals and interpretability, the identity function
emerges as a suitable choice. For binary class label predictions,
the step function demonstrates its efficacy. Meanwhile, estima-
ting binary class probabilities calls for the sigmoid function,
with the symmetric tanh function often surpassing sigmoid
due to its symmetry. The widely adopted Rectified Linear Unit
(ReLU) function owes its popularity to its ability to selectively
activate neurons [7], [10].

The identity activation function retains the input as the out-
put (f(x) = x). However, its constant gradient inhibits effec-
tive error reduction through gradient-based techniques. On the
other hand, the sigmoid activation function (f(x) = 1

1+e−x ),
which maps inputs into the 0 to 1 range, introduces training
challenges due to its asymmetric and constant-sign output.
In contrast, the tanh activation function (f(x) = ex−e−x

ex+e−x )
yields an output range of -1 to 1, efficiently encompassing
the spectrum of output values. This is further augmented by
its zero-centered nature, enhancing mapping capabilities [10].

The ReLU activation function’s distinctive feature is its se-
lective neuron activation, rendering neurons with linear trans-
formation outputs of 0 inactive. ReLU’s derivative function
effectively facilitates backpropagation (f(x) = max(0, x))
[10].
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Fig. 3: Active functions.

Moreover, for tackling more intricate problems, it is advi-



XLI SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES E PROCESSAMENTO DE SINAIS - SBrT 2023, 08–11 DE OUTUBRO DE 2023, SÃO JOSÉ DOS CAMPOS, SP.

sable to employ a network of neurons, as depicted in Figure
2b. In this architecture, the decisions made in the initial layer
are simplistic. However, as additional layers are introduced
leading to the output, the decisions become progressively
complex. The layers situated between the input and output
are commonly termed ’hidden layers,’ as the computations
occurring in these layers remain concealed from users. This
hidden layer can incorporate bias adjustments to enhance pre-
dictions. It’s worth noting that a neural network can encompass
’n’ perceptrons within each layer, thereby accommodating
multiple outputs [11], [7].

B. Interdigital filter

An essential component for wireless systems is the filter,
used to confine signals within specific frequency ranges [12].
The filter design process involves considering various para-
meters, such as the filter type, response, and order. Filters can
take various forms, including low-pass filters (allowing signals
below the cutoff frequency, fc), high-pass filters (permitting
signals above fc), pass-band filters (operating within the fc1
and fc2 range), and band-stop filters (acting as the opposite of
a band-pass filter). Furthermore, filter responses can exhibit
characteristics like Butterworth responses (maximally flat in
the passband) or Chebyshev responses (with passband ripple
and steeper transition bands). The filter order also plays a
crucial role, influencing complexity and transition band steep-
ness; higher orders result in greater complexity but enhanced
selectivity [13].

One prevalent technique for managing pass and stop band
characteristics, along with phase behavior, is the insertion loss
method. This approach implies constructing a π network using
inductors, capacitors, and resistors. Figure 4 showcases a 5th-
order π network as an illustrative example. The values of
capacitance and inductance are showed within the figure."

L′n =
∆Z0

ω0gN
and C ′n =

gN
ω0∆Z0

(1)

for parallel elements and

L′n =
gNZ0

∆ω0
and C ′n =

∆

ω0gNZ0
(2)

for series elements, where gn is the normalized parameter,
that changes with order and kind of response of filter, Z0 is
characteristic impedance of the line (usually Z0 = 50Ω) and
∆ = w2−w1

wc
(fractional bandwidth).

R

L1 C1 L3

L2 C2

C3 L5

L4 C4

C5 RL

Fig. 4: 5-order π network

Utilizing distributed element circuits offers a viable ap-
proach to achieving outcomes similar to those obtained with
lumped element circuits. This makes them a valuable al-
ternative for designing electronic components intended for
higher frequencies [4]. To achieve comparable performance,

distributed element circuits employ λg/4 resonators, where
λg = λ/

√
ϵr [14].

The interdigital topology is an extension of the hairpin
design, employing an array of resonators with an electrical
length of λg/4. In contrast to the virtual short circuit charac-
teristic of a hairpin filter, the interdigital filter incorporates a
real ground. This distinction arises from the placement of a
through-substrate via (TSV) at one edge of each resonator
and an open circuit at the opposite end. This arrangement
is necessary to achieve impedance and reactance equivalence
with a lumped circuit [12]

RG2
RL

TP

RG1

VD

RW

RE

Fig. 5: Interdigital filter structure

The design of a 5th-order interdigital filter is depicted
in Figure 5. In this design, the resonator’s dimensions are
determined by the values of RL for length and RW for
width. This structure features symmetry concerning the central
resonator, resulting in only two distinct gap sizes between
resonators, namely RG1 and RG2. To achieve an enhanced
response, a supplementary length denoted as RE is introduced
for odd resonators. Furthermore, the electrical distance (TP in
radians) between the tapping point and the through-substrate
via (TSV) located at the short circuit is a crucial parameter.
The initial design equations are as follows:

θ =
π

2

(
1− ∆f

2fo

)
and Y =

Yo

tan θ
(3)

Y =
Yo

tan θ
(4)

where ∆f is the pass-band, fo the central frequency and Yo =
1/Zo the input admittance (Zo = 50Ω).

III. RESULTS

The initial phase of designing a 5th-order Butterworth filter
entailed the creation of an ideal response, conceptualized using
a π network and represented through equations (1) and (2).
The circuit’s layout followed the configuration illustrated in
Figure 4, with the specific values of inductance, capacitance,
and resistance showed in Table I.

Subsequent to this, Advanced Design System software was
employed to calculate the dimensions of distributed elements,
employing equations (3) and (4). This calculation step was
then complemented by further dimension refinement using the
Nuhertz Designs System. After this, with Ansys EM, the final
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design of the filter was executed. This design strategy incor-
porated a substrate thickness of 0.254 mm and a conductor
thickness of 0.18 µm.

TABLE I: Values of lumped-element pass-band filter

Element Abbreviation Value
Input impedance R 50 Ω
Load impedance RL 50 Ω
Capacitor 1 C1 0.983 pF
Capacitor 2 C2 5.405 fF
Capacitor 3 C3 3.183 pF
Capacitor 4 C4 5.405 fF
Capacitor 5 C5 0.983 pF
Inductor 1 L1 35.37 pH
Inductor 2 L2 6.438 nH
Inductor 3 L3 10.93 pH
Inductor 4 L4 6.438 nH
Inductor 5 L5 35.37 pH

To initiate the process, a prototype of the filter was develo-
ped using Nuhertz Filter Solutions. The S parameters for this
prototype are illustrated in Figure 8, and the corresponding
dimensions are detailed in Table II under the ’Initial Design’
column. Subsequently, a manual optimization was conducted
to determine an optimal solution, as depicted in Figure 5. In
order to discern the variables exerting the most influence on
the S parameters, a parametric analysis was performed, taking
into account RL, RW , RE , RG1, RG2, and TP .

Through this analysis, it became evident that the variables
carrying the greatest impact were RG1, RG2, RE , and TP .
As consequence, a dataset comprising 1000 samples was
generated. Each sample involved variations of RG1, RG2, RE ,
and TP within a range of ± 20 percent of the manually
optimized result.

TABLE II: Structure and dimensions: initial and final filter

Item Dimensions
Size [µm]

Initial Final
design design

Resonator’s width RW 409 364
Resonator’s length RL 1124 1150
Resonator extension length RE 12.65 20
Gap 1 between resonators RG1 539.2 381
Gap 2 between resonators RG2 660.8 680
Tap-point electrical length TP 197.4 300
Through-substrate-vias diameter VD 125 125
Feed-line length FL 300 300
Feed-line width FW 67 67

A correlation analysis was performed using inputs from
treated raw data. For this problem, the input parameters are
S11 bandwidth, which is the range of |S11| that are -10 dB
in relation to the maximum value of it; S11 average, which
corresponds average of |S11| that are inside the previously
input; S11Fc, which corresponds to the Fc of S11 bandwidth;
S21 bandwidth, which is the range of |S21| that are in relation
of the fallen of 3 dB to the maximum value of it; S21 average,
which corresponds to the average of |S21| that are range of
the previously input; S21Fc, which corresponds to the Fc of
S21 bandwidth. In addition, the outputs are RG1, RG2, RE ,
and TP .

The correlation analysis highlighted that only RG1 and RG2

exhibited a strong correlation with the input parameters. For
instance, an increase in RG1 corresponded to a reduction in
bandwidth for S11, S21, and a decrease in the average value
of S21. The same trend was observed for RG2. Conversely,
weak correlations were identified between RE and TP with the
input parameters. Consequently, two models of Artificial Neu-
ral Networks (ANNs) using Multilayer Perceptrons (MLPs)
were constructed: one model incorporated the more strongly
correlated parameters, while the other included the weaker
ones.

The optimal activation function was determined through
a comparative analysis, utilizing 100 neurons and a single
hidden layer. Additional layers were tested but resulted in
inferior performance. The learning rate was held constant at
0.01 for this assessment. In the first model, where parameters
exhibited a negative correlation with the output, the tanh
activation function emerged as the most effective choice.
It displayed an elevated accuracy (with a score of 0.927),
surpassing the performance of identity (0.896), ReLU (0.909),
and sigmoid (0.924) functions. This heightened accuracy could
be attributed to its inverse proportionality to the parameters.
The loss function, visualized in Figure 6, indicated higher
values for data output. Elevated accuracy and loss function
values suggest that the model makes infrequent yet impactful
errors.

Further examination identified the optimal configuration as
comprising 200 neurons in a single hidden layer

0 1000 2000 3000
Iteration

102

103

104

105

Lo
ss

 fu
nc

tio
n

identity
logistic
tanh
relu

Fig. 6: Parametric analysis of activation functions for G1 and
G2.

In a similar manner, a study was conducted to determine the
optimal model for the RE and Tp parameters. In this case, due
to their weaker correlations, the choice of activation function
was guided by computational resource efficiency. The resulting
accuracy was relatively low, and the loss function was high. A
comparison of the four parameter performances can be seen
in Figure 7. The first group of parameters exhibited higher
accuracy, whereas the second group performed less effectively.

Moreover, Figure 8 illustrates the responses of |S11| and
|S21| for the lumped filter design, Nuhertz solution, and MLP
solution based solely on the predictions of the first parameter
group. Given the low correlation of TP and RE with the
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Fig. 7: Predicted X Trained data

input parameters, their impact remains minimal. The MLP
prediction outperforms the Nuhertz solution, yet it falls short
of the ideal outcome. The predictions were generated with
S11 and S21 bandwidths set at 2 GHz, fc of S11 and S21 at
27 GHz, and average |S11| and |S21| at -100 dB and -3 dB,
respectively. It’s worth noting that the frequency range where
|S11| ≤ −10dB extends from 25.992GHz to 28.1GHz, and
the average |S22| is 26.98dB, indicating the ANN’s effective
evaluation of other parameters. The presence of a peak within
the S11 bandwidth occurs because this input parameter only
considers the frequencies where |S11| ≤ −10 dB, without
considering behaviors within this interval
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Fig. 8: S parameters of filter design.

IV. CONCLUSIONS

In brief, the purpose of this project was to use the ANN
to accelerate the design process of a filter that works for 5G
applications, in specific, a 5-order interdigital filter that has
a Butterworth response and operates at 26 GHz to 28 GHz
in ROGERS RT/duroid 6006. Many targets were achieved,

but the model needs improvements, like the bandwidth of
return loss or the usage of a higher order filter to have more
parameters that have a strong correlation with S parameters.
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