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Abstract— In this paper, we analyze three different methods
to perform channel estimation aligned with the joint active
and passive beamforming design in an intelligent reflecting
surface (IRS)-assisted multiple input multiple output (MIMO)
networks. For this purpose, we explore the Kronecker structure
of the involved channels to factorize each channel in horizontal
and vertical channel components. After the factorized channels
are estimated, we apply different strategies to active and
passive beamforming designs where each method apply different
strategies to jointly optimize the active and passive beamforming.
Simulation results showed that the methods which explore
the Kronecker structure can significantly enhance the spectral
efficiency compared to the benchmark model, due to the
processing done to obtain the factorized channel components
which reduces the noise from the channel estimation step, with
less computational complexity.

Keywords— channel factorization, channel estimation,
intelligent reflecting surface, beamforming, MIMO.

I. INTRODUCTION

Intelligent reflecting surface (IRS) is regarded as a
promising technology to be used in beyond fifth generation
(B5G) due to its capability to enhance the system performance
by creating a virtual line-of-sight (LoS) link between the base
station (BS) and the user-equipment (UE) which can, for
example, increase the data rate without adding radio-frequency
chains [1], [2]. The IRS is a uniform rectangular array (URA)
composed of several reflecting elements and each element
is capable of reflecting the impinging wave with different
phases in order to generate a construct interference at the UE.
In the context of terahertz (THz) communications, the IRS
can create a virtual LoS link between the BS and the UE
and reduce the attenuation losses related to high frequencies
[3]. On the other hand, by adding the IRS into the wireless
network a new channel has to be estimated, the BS to the
IRS channel. Since the IRS is usually a passive structure it
does not have signal processing capability making the channel
estimation step more challenging and in order to adjust the
reflecting elements both channels or the composed channel,
i.e., end-to-end channel, must be estimated. In this context,
the works of [4] and [5] proposed a channel estimation using
an on-off scheme of different groups of reflecting elements.
In practice, the off-stage is an ideal scenario since it considers
that the reflecting elements are capable of acting as perfect
absorber. To overcome that issue, [6] proposed a DFT-based
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scheme where the IRS phase shifts are given according to
a column of the DFT matrix. In [7] and [8], the authors
used the DFT scheme to obtain the composed channel via
a least squares (LS) strategy and then proposed a Khatri-Rao
factorization (KRF) to estimate the BS-IRS channel and the
IRS-UE channel. regarding IRS-assisted THz communications,
the works of [9] and [10] explored the Kronecker structure in
the geometrical channel model to perform a high-order tensor
decomposition to estimate the angles of arrival and departure.

Regarding the joint beamforming design of active
beamforming, precoder and combiner, at the BS and the
UE, respectively, and passive beamforming, IRS phase shifts,
in [11], the authors proposed singular value decomposition
(SVD)-based solutions to jointly optimize the precoder,
combiner, and IRS phase shifts. In [12], the authors explored
the Kronecker structure in the geometrical channel to split the
beamforming optimization problem into horizontal and vertical
sub-problems to maximize the received SNR at the UE.

The aforementioned works did not study the impact of the
channel estimation techniques aligned with the joint active
and passive beamforming design, considering the Kronecker
structure of the channels. In this regard, this paper studies
the impact of different channel estimation procedures in the
joint active and passive beamforming design by comparing
the spectral efficiency (SE) achieved by each method as well
as their computational complexities. Our results show the
trade-offs involved by the different methods.

Notation: Scalars, vector, matrices and tensors are denoted
(a), (a), (A) and (A), respectively. The superscripts {}T , {}∗,
{}† and {}H denote transpose, conjugate, pseudo-inverse, and
hermitian, respectively. The operators ⊗, ⋄, ◦, ⊙ and ∠ are the
Kronecker, the Khatri-Rao, the outer product, the Hadamard
products, and the angle of a complex value, respectively.
vec(A) converts A to a column vector by stacking its columns.
The n-mode product of a tensor X ∈ CI×J×K and a matrix
A ∈ CI×R is denoted by Y = X ×n A, n = 1, 2, 3.

II. SYSTEM MODEL

In this paper, we consider an IRS-assisted multiple input
multiple output (MIMO) system, where the BS utilizes M
antennas to transmit towards an UE with L antennas, through
an IRS that features N reflecting elements. Additionally, there
is no direct link between the BS and the UE.

A. Least Square (LS) Channel Estimation

In order to estimate the combined channel a time-slotted
transmission is used. During the channel training, we consider
K blocks with T time slots each totaling TK time slots to
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perform the channel estimation. During the k-th block k ∈
[1, . . . ,K] the IRS phase shifts are constant, and during the
t-th time slot t ∈ [1, . . . , T ] the pilots transmitted are constant.
In this case, the IRS phase shifts only vary with k and the
pilots only vary with t. Both pilot sequence and IRS phase
shifts are respectively given by the columns of a T × T and
K ×K DFT matrices. The signal received by the UE, at the
k-th block and t-th time slot, can be expressed as

r[k, t] = Gdiag(s[k])Hx[t] + z[k, t], (1)

where G ∈ CL×N is the channel between the IRS and the UE,
s[k] ∈ CN is the IRS phase shift vector at the k block defined
as s

.
= [s1, . . . , sN ]T with ∠[sn] ∈ [−π, π) representing the

phase shift of the n-th reflecting element and the reflection
amplitude is |sn| = 1, H ∈ CN×M is the channel between
the BS and the IRS, x[t] ∈ CM×1 is the pilot symbol at the
t-th time slot with power Pt and z[k, t] ∈ CL×1 is the additive
white Gaussian noise (AWGN) vector with zero mean and σ2

z

variance. By collecting the received signal during one block
we can write the received signal at the k-th block as

R[k] = Gdiag(s[k])HX +Z[k], (2)

where R[k]
.
= [r[k, 1], . . . , r[k, T ]] ∈ CL×T , X

.
=

[x[1], . . . ,x[T ]] ∈ CM×T and Z[k]
.
= [z[k, 1], . . . ,z[k, T ]] ∈

CL×T . After this, we can apply a matched filter with the pilot
knowledge and the filtered received signal at the k-th block
can be written as

R[k]X† = Gdiag(s[k])H +Z ′[k], (3)

where Z ′[k] = Z[k]X† is the filtered noise term. We can
apply vec(Adiag(b)C) = (CT ⋄A)b in (3) to obtain

r[k] = (HT ⋄G)s[k] + z′[k] (4)

where r[k]
.
= vec(R[k]) ∈ CLT×1 and z′[k]

.
= vec(Z ′[K]) ∈

CLT×1. By concatenating r[k] during the K blocks the
received signal during the channel training procedure can be
written as

R = (HT ⋄G)S +Z ′, (5)

where R
.
= [r[1], . . . , r[K]] ∈ CLT×K , S

.
=

[s[1], . . . , s[K]] ∈ CN×K , Z ′ .
= [z′[1], . . . and z′[K]] ∈

CLT×K . The composed channel is defined as F
.
= HT ⋄G.

Finally, to obtain an estimation of the composed channel
we apply a right filter in (5) with the knowledge of the IRS
phase shifts during the channel training stage

F̂ = RS†. (6)

As discussed in [7] the LS estimate of F is given by (6). In
order to estimate F , the number of blocks and time slots must
obey K ≥ N and T ≥ M .

B. Single Stage: Khatri-Rao Factorization (KRF)

Furthermore, with an estimation of the composed channel
F is possible to obtain the estimations of H and G since
the composed channel is given by the Khatri-Rao product of
those channels. The estimations of H and G can be obtained

Fig. 1: Diagram of the channel estimation methods

through the KRF which solves the following optimization
problem (further details can be found in [7])

min
Ĥ ,Ĝ

||F̂ − Ĥ
T
⋄ Ĝ||2F . (7)

After the KRF step in (7) we have Ĥ = Hdiag(αH) and
Ĝ = Gdiag(αG), where αH ,αG ∈ CN×1 are the vectors
containing the scaling factors that are inherent to the KRF
procedure, such that diag(αH)diag(αG) = IN .

III. TWO-DIMENSIONAL CHANNEL ESTIMATION

In this paper, we consider that both BS and UE antennas
consist of URA. The BS is equipped with My antennas along
the y axis and Mz along the z axis where M = MyMz .
Similarly, the UE is equipped with Ly and Lz antennas
along the y and z axis respectively, where L = LyLz .
The IRS is also assumed to be an URA with Ny and Nz

reflecting elements along the y and z axis, respectively, with
N = NyNz . According to [12] if we consider the geometrical
channel model and the channel has only one path, i.e., LoS
channel, then this channel can be written as a Kronecker
product of its horizontal and vertical components. In this case,
the channels H and G can be written as

H = Hy ⊗Hz G = Gy ⊗Gz, (8)

where Hy ∈ CNy×My and Hz ∈ CNz×Mz are the horizontal
and vertical components of H , respectively, and also, Gy ∈
CLy×Ny and Gz ∈ CLz×Nz are the horizontal and vertical
components of G respectively. If more paths are assumed
the expressions in (8) become approximations. The impacts
of these approximations are discussed in Section VI.

A. Single Stage: Kronecker Factorization (KronF)
By considering the Kronecker structure of the channels in

(8), the composed channel F can be written as

F = (Hy ⊗Hz)
T ⋄ (Gy ⊗Gz). (9)

It is possible to rewrite (9) using the property
(A ⊗ B) ⋄ ( C ⊗ D) = P [(A ⋄C)⊗ (B ⋄D)], where
P is a permutation matrix defined in [9]

PF = (HT
y ⋄Gy)⊗ (HT

z ⋄Gz). (10)
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We define F y
.
= (HT

y ⋄ Gy) and F z
.
= (HT

z ⋄ Gz) to
be the horizontal and vertical composed channel components,
respectively. In order to estimate F y and F z , we transform the
estimated composed channel matrix obtained in (6) by means
of the row-permutation matrix P , which allows us to formulate
a Kronecker factorization (KronF) problem as follows (details
can be found in [8]):

min
F̂ y,F̂ z

||PF̂ − F̂ y ⊗ F̂ z||2F . (11)

After the KronF in (11) we have F̂ y = γyF y and F̂ y = γzF z ,
where γy, γz ∈ C are the scaling factors inherent to the KronF
procedure, such that γyγz = 1.

B. Two Stage: Kronecker and Khatri-Rao Factorization
(Kron-KRF)

After the KronF stage in (11) we can explore the Khatri-Rao
structure in F y and F z to obtain Gy,Gz,Hy,Hz . To
estimate the horizontal channel components, the KRF method
is applied in F̂ y , solving the following problem

min
Ĥy,Ĝy

||F̂ y − Ĥ
T

y ⋄ Ĝy||2F . (12)

Similarly, the vertical channel components are estimated by
applying the KRF method to F̂ z , which solves the following
problem

min
Ĥz,Ĝz

||F̂ z − Ĥ
T

z ⋄ Ĝz||2F . (13)

Solving problems (12) and (13) provide us with
Ĥy = Hydiag(αHy), Ĥz = Hzdiag(αHz),
Ĝy = Gydiag(αGy) and Ĝz = Gzdiag(αGz), where
these diagonal matrices contain the scaling ambiguity
factors, such that diag(αHy)diag(αGy) = IN and
diag(αHz)diag(αGz) = IN .

It is worth noting that the vertical and horizontal channel
components can not be directly obtained from the estimated
channel matrices Ĥ and Ĝ due to the KRF scaling ambiguities
that break the model of (8). In this case, the scaling ambiguities
of Ĥ and Ĝ would have to be separable, i.e., they would have
to satisfy diag(α) = diag(α1)⊗diag(α2). Such an assumption
is not possible since α is a random vector that does not follow
a Kronecker (separable) structure.

Fig 1 presents a diagram of the steps involved in each
channel estimation method.

IV. BEAMFORMING DESIGN

In this section, we will detail the different beamforming
design methods associated with each channel estimation
procedure. In this regard, the received signal at the UE is
given by

r = wHĜdiag(s)Ĥqx+ a, (14)

where w ∈ CL×1 is the combiner vector, q ∈ CM×1 is the
precoder vector, x ∈ C is the transmitted symbol with power
P and a is the AWGN with a ∼ CN (0, σ2

a).

Algorithm 1: Classical solution [11]

1 Compute the truncated SVD of G and H
λgugv

H
g ≈ G and λhuhv

H
h ≈ H .

2 Design the combiner as w = ug.
3 Design the precoder as q = vh.
4 Design the IRS phase shifts as s = −∠[v∗

g ⊙ uh]

A. Classical solution

In this regard, we want to maximize the received signal
by adjusting the precoder, combiner, and IRS phase shifts
properly using the channel estimations obtained from the
single-stage: KRF. This leads to the following optimization
problem

max
w,q,s

|(wHĜdiag(s)Ĥq)|2 (15)

s.t. ||w|| = ||q|| = 1 and sn ∈ [−π, π].

A solution to this problem was proposed by [11]. The solution
relies on rank one approximation of the channels H and G to
obtain the dominant eigenvectors which are used to design the
precoder, combiner, and IRS phase shifts. The steps to solve
the beamforming optimization are presented in Algorithm 1.

B. Kronecker Factorized (KF) solution

By considering the channel components obtained in III-A, it
is possible to rewrite (14) as the product of the horizontal and
vertical received signal if we impose a Kronecker structure
on the precoder, combiner, and IRS phase shifts vectors, i.e.,
w

.
= wy ⊗wz, q

.
= qy ⊗ qz and s

.
= sy ⊗ sz. This leads to

r = dydz + a, (16)

where dy
.
= wH

y Ĝydiag(sy)Ĥyqy is the horizontal desired
signal and dz

.
= wH

z Ĝzdiag(sz)Ĥzqz is the vertical desired
signal. In this case, we can also write the SNR as a
product between horizontal and vertical SNR, respectively
given by SNRy

.
= |dy|2/

√
σ2
a and SNRz

.
= |dz|2/

√
σ2
a. This

means that maximizing the SNR is the same as individually
maximizing SNRy and SNRz . In this regard, [12] proposed the
KF method which solves the problem in (15) by maximizing
SNRy and SNRz as follows

max
wy,qy,sy

|(wH
y Ĝydiag(sy)Ĥyqy)|2 (17)

s.t. ||wy|| = ||qy|| = 1 and sy ∈ [−π, π],

max
wz,qz,sz

|(wH
z Ĝzdiag(sz)Ĥzqz)|2 (18)

s.t. ||wz|| = ||qz|| = 1 and sz ∈ [−π, π].

To solve the problems in (17) and (18) the classical method,
detailed in Section IV-A, is used in each domain then the
horizontal and vertical beamforming vectors are combined via
a Kronecker product. This procedure is summarized in Alg. 2.



XLI BRAZILIAN SYMPOSIUM ON TELECOMMUNICATIONS AND SIGNAL PROCESSING - SBrT 2023, OCTOBER 08–11, 2023, SÃO JOSÉ DOS CAMPOS, SP

Algorithm 2: KF solution [12]

1 Compute the truncated SVD of Gy , Gz , Hy and Hz .
λgyugyv

H
gy

≈ Gy , λgzugzv
H
gz

≈ Gz ,
λhyuhyv

H
hy ≈ Hy and λhzuhzv

H
hz ≈ Hz .

2 Design the combiner as w = ugy ⊗ ugz .
3 Design the precoder as q = vhy ⊗ vhz .
4 Design the IRS phase shifts as
s = −∠{[v∗

gy
⊙ uhy ]⊗ [vgz ⊙ uhz ]}

C. Third-Order Tensor (TOT) solution

In this section, we detail the beamforming optimization
associated with the single stage: KronF. In this context, the
Khatri-Rao structure in F̂ y and F̂ z can be directly used
to solve the beamforming problem in (15). This is possible
by rearranging F̂ y and F̂ z as third-order tensors using
the following mapping [Fy]ly,my,ny

.
= [F y](ly−1)My+my,ny

and [Fz]lz,mz,nz

.
= [F z](lz−1)Mz+mz,nz

, where Fy ∈
CLy×My×Ny and Fz ∈ CLz×Mz×Nz , lt = 1, . . . , Lt, mt =
1, . . . ,Mt, nt = 1, . . . , Nt, t ∈ {y, z}. Considering this tensor
formulation, the desired signal dy and dz can be written as
dy = Fy ×1wy ×2 qy ×3 sy and dz = Fz ×1wz ×2 qz ×3 sz .
Similarly to the KF solution, we want to maximize dy and dz ,
but now considering the tensor modeling which leads to the
following optimization problems

max
wy,qy,θy

||F̂y ×1 wy ×2 qy ×3 sy||2 (19)

s.t. ||wy|| = ||qy|| = 1 and sy ∈ [−π, π]

max
wz,qz,θz

||F̂z ×1 wz ×2 qz ×3 sz||2 (20)

s.t. ||wz|| = ||qz|| = 1 and sz ∈ [−π, π]

To solve these problems two independent high order singular
value decomposition (HOSVD) can be applied in F̂y and
F̂z (a detailed explanation about the HOSVD is given in
[13]). The horizontal combiner, precoder, and IRS phase
shifts (wy, qy, sy) are respectively given by the dominant left
singular vector of the first mode, second mode and third mode
of Fy and the same procedure is done in Fz to obtain the
vertical combiner, precoder, and IRS phase shifts. The steps
involved in the TOT solution [12] are detailed in Alg. 3.

V. COMPUTATIONAL COMPLEXITY

Let us recall all the steps involved in each method to equate
the computational complexity of each method, since the LS is
common for all of them it is disregarded. Since all the methods
are based on rank one approximations, according to [14], this
operation has a complexity of O(IJ), where I is the number
of columns and J is the number of lines. The complexities of
the KRF and the KronF are the same and are given by the rank
one approximation of the matrix which is being factorized. The
complexities of the beamforming solutions are given by the
rank one approximation of each estimated channel component.

The complexity of the single stage: KRF is given by
O[NML] and the complexity of the classical beamforming

Algorithm 3: TOT solution [12]

1 Compute the HOSVD of Fy and Fz to obtain
{wy, qy,θy} and {wz, qz,θz}, respectively.

2 Design the combiner as w = wy ⊗wz .
3 Design the precoder as q = q∗

y ⊗ q∗
z .

4 Design the IRS phase shifts as s = −∠[sy ⊗ sz].

design is O[N(M+L)]. The overall complexity is O[N(ML+
M + L)].

The complexity of the double stage: KronF-KRF is given by
O[NML+MyLyNy +MzLzNz] and the complexity of the
KF beamforming design is O[Ny(My+Ly)+Nz(Mz +Lz)].
The resulting complexity is O[MNL+MyLyNy+MzLzNz+
Ny(My + Ly) +Nz(Mz + Lz)].

The complexity of the single stage: KronF is given by
O[NML] and the complexity of the beamforming design
given by the TOT method is O[3MyLyNy +3MzLzNz]. The
total complexity is O[MNL+ 3MyLyNy + 3MzLzNz].

VI. SIMULATION RESULTS

We consider an IRS-assisted MIMO network where the BS
is equipped with M = 16 antennas, composed of My =
Mz = 4, and the IRS is equipped with N = 100 reflecting
elements, composed of Ny = Nz = 10 and the UE has L = 16
antennas, with Ly = Lz = 16. We assume an attenuation of
35 dB and 30 dB on H and G, respectively. Also, we consider
σ2
z = σ2

a = −80 dBm. For comparison, the baseline solution
is given by the single stage: KRF [7] and the beamforming
classical beamforming design [11]. Also, the perfect channel
state information (CSI) scenario is used for comparison and
the beamforming design is given by the classical solution [11].

Fig. 2 shows the SE varying the pilot power in the channel
training stage considering a transmit power P = 20 dBm.
Due to the processing in the single stage: KronF and the two
stage: Kron-KRF part of the noise is rejected and the TOT and
KF achieve higher SE compared to the baseline solution. As
shown in Fig. 2, the KF and TOT solutions have the same
performance since the horizontal and vertical optimization
problems in the KF method and in the TOT method are
equivalent. Although the TOT requires two estimations, F̂ y

and F̂ z , it achieves better performance than the classical
solution which also requires two estimations, Ĥ and Ĝ due
to the higher noise rejection in the single stage: KronF when
compared to the single stage: KRF. For instance, considering
Pt = 0 dBm the TOT and the KF have 4 bit/s/Hz more SE
compared with the baseline while having 3 bit/s/Hz less SE
compared with the perfect CSI.

Fig. 3 shows the SE varying the number of reflecting
elements considering pilot power of Pt = 5 dBm and transmit
power of P = 20 dBm. As expected, by increasing the number
of reflecting elements the SE of all methods increases due
to better channel estimations and higher beamforming gain.
Regarding the channel training stage, it is possible to observe
a trade-off between the number of reflecting elements and the
pilot power in order to achieve a given SE, by increasing
the number of reflecting elements the transmitted pilot power
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Fig. 2: SE versus Pt Fig. 3: SE versus N

Fig. 4: SE vs Pt for different values of elevation spread

required to achieve the perfect CSI is reduced. For example,
considering 600 reflecting elements, the TOT and KF solutions
have 4 bits/s/Hz higher SE than the baseline and it is only 1
bit/s/Hz lower than the perfect CSI case.

In Fig. 4, we consider a scenario where the channels H
and G have four paths. The angles of elevation are generated
from a uniform distribution U[90 − δ, 90 + δ], where δ is
the elevation spread. As mentioned, for multi-path channels
the equations in (8) become approximations and the quality
of this approximation is directly associated with the δ. For
instance, considering δ = 2.5◦, the TOT and KF methods
have 3 bit/Hz/s more SE compared with the baseline and for
δ = 15◦ this gap becomes 1 bit/Hz/S.

Fig. 5 shows the computational complexity of each method
varying the number of reflecting elements. The methods which
explore the separability of the channels, TOT and KF, present
lower computational complexity due to the reduced cost in
the joint beamforming design. Considering an IRS with 1000
elements, the TOT and KF methods have, respectively, 37%
and 45% less computational complexity than the baseline.

VII. CONCLUSIONS

In this paper, we studied the impact of different channel
estimation procedures, one method that does not explore the
Kronecker factorization structure of the geometrical channels
and two methods that explore the Kronecker structure. Once
the channel estimation step is done, three beamforming
methods, one for each estimation procedure, design the
precoder, combiner and IRS phase shifts. The simulation
results showed the benefits of exploring the Kronecker

Fig. 5: Computational complexity versus N

structure of the channels in both SE and computational
complexity. Perspectives of this work include the extension of
the presented channel estimation and beamforming schemes
to the joint communication and sensing scenario.
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