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in OFDM Systems Without Cyclic Prefix
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Abstract— In modern communication systems operating with
Orthogonal Frequency-Division Multiplexing (OFDM), channel
estimation requires minimal complexity with one-tap equalizers.
However, this depends on cyclic prefixes, which must be suffi-
ciently large to cover the channel impulse response. Conversely,
the use of cyclic prefix (CP) decreases the useful information
that can be conveyed in an OFDM frame, thereby degrading the
spectral efficiency of the system. In this context, we study the
impact of CPs on channel estimation with complex-valued neural
networks (CVNNs). We show that the phase-transmittance radial
basis function neural network offers superior results, in terms of
required energy per bit, compared to classical minimum mean-
squared error and least squares algorithms in scenarios without
CP.

Keywords— Machine Learning, OFDM, Neural Network,
CVNN.

I. INTRODUCTION

With the increasing demand for technologies such as mas-
sive machine-type communications (mMTC), enhanced mobile
broadband (eMBB), and ultra-reliable and low latency commu-
nications (URLLC), higher data rates over tighter bandwidths
have never been so important [1]. In view of these demands,
recent telecommunications technologies (e.g., 5G and beyond)
have become paramount to support these services.

A key enabling technology in most current communi-
cation systems is orthogonal frequency-division multiplex-
ing (OFDM). Employing OFDM, communications systems
can convey information via multiple and closely spaced
sub-carriers (i.e., narrowband subchannel frequencies). Be-
sides the natural user multiplexing in different frequencies,
OFDM also provides advantages regarding intersymbol inter-
ference (ISI) [2] and intercarrier interference (ICI) [3]. While
the former is simply avoided by using a cyclic prefix, the
latter is only a problem in dynamic channels or local oscillator
mismatches with high carrier frequency offsets (CFOs) [4].

In typical OFDM systems, to increase the useful data rate
(not considering channel coding), it is possible to reduce the
pilot rate, extend the number of subcarriers, or increase the
modulation order. However, these solutions come with their
own set of issues. By reducing the pilot rate, the channel
estimation becomes less accurate, and the system becomes
more susceptible to rapid channel variations, such as those
present in dynamic channels. By extending the number of
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subcarriers while maintaining the same bandwidth (to avoid
interference in adjacent channels), there is an increase in both
the computational complexity and the clock speed required to
process the transmitted and received signals. Lastly, increasing
the modulation order degrades the bit error rate (BER) at the
receiver.

Motivated by the widespread use of machine learning (ML)
and bolstered by the support of the universal approximation
theorem of artificial neural networks (ANNs) [5], several
works have proposed ML-based algorithms for channel es-
timation in OFDM systems [6]–[12]. Soares et al. [7] ex-
tended a classical smoothing filter of channel estimation with
principal component analysis (PCA) to cut residual noise. Le
et al. [8] improve the least squares (LS) channel estimation
results using fully connected deep neural networks (DNNs),
convolutional neural networks (CNNs), and bidirectional long
short-term memory (LSTM). Mei et al. [9] employed online
and linear ML-based channel estimation with low complexity
and a fast convergence rate. Jebur et al. [10] implemented
an ML-based channel estimator to track time-varying and
frequency-selective channels with a small number of pilots.
Müller et al. [11] proposed a symbol timing recovery algorithm
with deep radial basis function (RBF) ANNs. Ye et al. [12]
demonstrated the potential of deep learning for joint channel
estimation and signal detection of OFDM systems without
cyclic prefix (CP).

Apart from these real-valued ML algorithms, complex-
valued neural networks (CVNNs) have also presented promis-
ing results for telecommunications, such as channel equaliza-
tion, beamforming, channel estimation, and decoding [13]–
[19]. As already demonstrated in the literature, compared
with real-valued neural networks (RVNNs), CVNNs have in-
creased functionality, better performance, and reduced training
time [20]–[22]. Furthermore, CVNNs also rely on the universal
approximation theorem, as recently proved in [23].

In this context, this paper proposes an extension of [12] for
OFDM channel estimation and equalization using a CVNN,
the phase-transmittance radial basis function (PT-RBF) neural
network, in a CP-free scenario to increase the useful informa-
tion rate. Unlike [12], in this work we do not take into account
the OFDM decoding since it can be easily handled with a low
complexity fast Fourier transform (FFT). Moreover, it reduces
the search space, and, consequently, the neural network com-
plexity, i.e., a smaller number of layers and neurons is nec-
essary. This paper aims to demonstrate a suitable approach to
online channel estimation of OFDM without CP. It is important
to note that, similarly to this paper, Chu et al. [24] proposed
a channel estimation technique using a CVNN for optical
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Fig. 1. Orthogonal frequency division multiplexing (OFDM) communication
architecture.

systems operating with filter bank multicarrier with offset
quadrature amplitude modulation (FBMC/OQAM). However,
compared to OFDM, FBMC has a higher implementation
complexity, and the absence of a cyclic prefix (CP) is an
intrinsic characteristic of this architecture. To the best of our
knowledge, it is the first work handling a CVNN for OFDM
channel estimation and equalization without CP.

The remainder of this paper is organized as follows. Sec-
tion II discusses the implemented OFDM communication
scheme, and Section III the classical least squares (LS) and
minimum mean-square error (MMSE) channel estimation al-
gorithms. Section IV describes the proposed PT-RBF channel
estimation. Section V presents the computational complexities
of the proposed algorithm. Section VI presents the results of
the proposed approach compared with LS and MMSE channel
estimation. Lastly, Section VII concludes the paper.

II. OFDM SYSTEM MODEL

Fig. 1 illustrates the OFDM communication architecture
considered in this work. First, on the transmitter (Tx) side,
the QAM symbols q are parallelized by an S/P block, map-
ping C 7→ CK , where K is the number of sub-carriers.
Then, the K-parallel symbols feed the pilot insertion block
that, depending on the channel estimation scheme at the
receiver (Rx) side, inserts block- or comb-type pilots [25].
Next, an inverse fast Fourier transform (IFFT) block converts
data from the frequency domain to the time domain. In the
sequel, a cyclic prefix (CP) of length Ncp is inserted at
the beginning of each IFFT output to mitigate the inter-
symbol interference (ISI) [12]. Finally, the resultant signal is
serialized (i.e., CK+Ncp 7→ C) in the parallel to serial (P/S)
block and sent over the wireless channel.

Considering a sample-spaced multipath channel with Nds

samples h[n] ∈ CNds , the baseband received signal is

y[n] =

Nds−1∑
i=0

hi+1[n]x[n− i] + w[n], (1)

where n is the discrete-time index, x[n] ∈ C is the transmitted
data, and w[n] ∼ CN (0, σ2

w) ∈ C is the additive white
Gaussian noise (AWGN) at the receiver, with zero mean and
variance σ2

w.
On the receiver side, the income signal is firstly parallelized

by an S/P block, mapping C 7→ CK+Ncp . Next, the cyclic
prefix is removed in the CPR block, and the resultant signal

of dimension CK is converted to the frequency domain by
a fast Fourier transform (FFT) block. Afterward, the FFT
output feeds the channel estimation block, which estimates
the channel for the equalization block. A P/S block serializes
the resulting signal to produce the estimated outputs q̂.

III. CHANNEL ESTIMATION AND EQUALIZATION

In this work, we consider block-type pilot arrangements for
channel estimation. In the frequency domain, we consider x[k]
the pilots before the CP block at the Tx, and y[k] the pilots
after the FFT block at the Rx, with the frequency domain
index k ∈ [1, 2, · · · ,K]. In addition, h[k] corresponds to the
channel related to the k-th subcarrier.

The LS estimator minimizes the square distance between
x[k] and y[k] [26], obtaining the channel estimation

hLS [k] =
y[k]

x[k]
. (2)

The MMSE estimator is obtained with second-order statis-
tics of the channel [26], to minimize the mean square error,
as

hMMSE [k] = σ2
h[k]

(
σ2
h[k]|x[k]|2 + σ2

w[k]
)−1

x∗[k]y[k], (3)

in which [·]∗ is the conjugate operator, [·]−1 is the inverse
operator, and σ2

h[k] and σ2
w[k] are the variances of h[k] and

w[k], respectively. Note that, besides the inherent higher com-
putational complexity compared with (2), the MMSE estimator
is also dependent on the channel statistics σ2

h[k].
In both LS and MMSE estimations, the equalization is

performed, per subcarrier, as

x̃[k] =
y[k]

h̃[k]
, (4)

where h̃[k] = hLS [k] or h̃[k] = hMMSE [k], depending on the
channel estimation method.

IV. PROPOSED CVNN CHANNEL ESTIMATION AND
EQUALIZATION

The proposed channel estimation and equalization with
a CVNN are shown in Fig. 2. Unlike the usual channel
estimation and equalization illustrated in Fig. 1, the proposed
ML scheme performs both tasks at the same time, in a
joint scheme. The CVNN block is composed of a PT-RBF
neural network with three layers. The input layer is fed with
the FFT output vector y. The hidden layer maps y onto a
nonlinear space, through Nn neurons. The Gaussian kernel
(i.e., activation function) of the i-th neuron is

ϕi = exp [ℜ{vi}] + ȷ exp [ℑ{vi}], (5)

in which vi is the argument of the i-th Gaussian kernel, given
by

vi =
∥ℜ{y} − ℜ{γi}∥22

ℜ{σ2
i }

+ ȷ
∥ℑ{y} − ℑ{γi}∥22

ℑ{σ2
i }

, (6)

where γi ∈ CK is the center vector and σ2
i ∈ C is the variance

of the i-th neuron. The operators ℜ{·} and ℑ{·} return the real
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Fig. 2. Orthogonal frequency division multiplexing (OFDM) communication
architecture with the proposed CVNN-based channel estimation and equaliza-
tion. The CVNN block represents the PT-RBF neural network composed of
three layers.

and imaginary components, respectively. The Euclidean norm
is denoted by ∥ · ∥2.

In the output layer, the k-th equalized output data x̃[k] is
obtained via a linear combination of the Gaussian kernels and
the vector of synaptic weights wk ∈ CNn , as

x̃[k] = wT
k ϕ, (7)

in which [·]T is the transpose operator and ϕ ∈ CNn is the
vector of Gaussian kernels.

The PT-RBF is optimized via the complex-valued back-
propagation process, using the stochastic gradient de-
scent (SGD) [19]. For the sake of representation, m denotes
the SGD iteration during a training epoch with M attributes,
i.e., M -OFDM symbols from the preamble. As the PT-RBF
neural network utilized in this work has only one hidden layer,
its update equations can be simplified from the generalized
model proposed in [18], as

W[m+ 1] = W[m] + ηwe[m]ϕH [m], (8)

b[m+ 1] = b[m] + ηbϕ[m], (9)

Γ[m+ 1] = Γ[m] + ηγℜ{δ[m]} [ℜ{Ym} − ℜ{Γ[m]}]
+ ȷηγℑ{δ[m]} [ℑ{Ym} − ℑ{Γ[m]}] , (10)

σ2[m+ 1] = σ2[m] + ησℜ{δ[m]}ℜ{v[m]}
+ ȷησℑ{δ[m]}ℑ{v[m]}, (11)

where v ∈ CNn is the vector of Gaussian kernel arguments,
W ∈ CK×Nn is the matrix of synaptic weights, b ∈ CK

is the vector of bias, Γ ∈ CNn×K is the matrix of center
vectors, and σ2 ∈ CNn is the vector of center variances. The

parameters ηw, ηb, ηγ , and ησ correspond to the learning rate
of W, b, Γ, and σ2, respectively. The operator [·]H denotes
the Hermitian.

For Γ and σ2, the diagonal matrix of local gradients δ ∈
CNn×Nn is given as

δ[m] = diag[ℜ{WH [m]e[m]} ⊙ ℜ{ϕ[m]} ⊘ ℜ{σ2[m]}]
+ ȷdiag[ℑ{WH [m]e[m]} ⊙ ℑ{ϕ[m]} ⊘ ℑ{σ2[m]}], (12)

in which diag[·] returns a square diagonal matrix with its
argument vector on the main diagonal, and ⊙ and ⊘ denote the
Hadamard product and division, respectively. The error vector
is given by e[m] = xm− x̃m, for the PT-RBF output x̃m with
respect to the desired OFDM symbol xm, in the preamble. In
addition, Ym is the expanded matrix of OFDM input symbols

Ym =


— yT

m —
— yT

m —
...

— yT
m —

 . (13)

V. COMPUTATIONAL COMPLEXITIES

In order to analyze the computational complexity of the
proposed PT-RBF joint channel estimation and equalization,
we rely on the PT-RBF computational complexity presented
in [19] (see Table 3.7 on page 87). In this work, the com-
putational complexities are expressed in terms of the number
of real-valued multiplications and additions. To accomplish
this, each complex-valued multiplication is represented by
four real-valued multiplications and two additions, and each
complex-valued addition is represented by two real-valued
additions. Based on [19], Table I depicts the computational
complexities of training and inference of the PT-RBF em-
ployed in this work.

TABLE I
COMPUTATIONAL COMPLEXITIES FOR TRAINING AND INFERENCE OF THE

PT-RBF FOR JOINT CHANNEL ESTIMATION AND EQUALIZATION.

Stage Additions Multiplications

Training Nn(16K − 2) + 4K Nn(16K + 14) + 2K
Inference Nn(8K − 2) Nn(6K + 2)

Then, keeping the number of subcarriers K = 64, Table II
presents the PT-RBF computational complexities depending
on the number of neurons Nn. Additions are described by +,
and multiplications by ×.

TABLE II
PT-RBF COMPUTATIONAL COMPLEXITIES FOR TRAINING AND

INFERENCE, KEEPING K = 64 SUBCARRIERS.

Nn
Training Inference

+ × + ×
256 261,888 265,856 130,560 98,816
512 523,520 531,584 261,120 197,632
1,024 1,046,784 1,063,040 522,240 395,264
2,048 2,093,312 2,125,952 1,044,480 790,528
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For the sake of simplicity, in order to compare the com-
putational complexity of the proposed work with the joint
channel estimation and decoding proposed by Ye et al. [12], we
only consider the number of real-valued multiplications since
it is the most onerous mathematical operation. The number of
real-valued multiplications of an RVNN with multiple fully-
connected layers can be found in [19] (see Table 2.1 on
page 37). Unlike the work of Ye et al. [12], the PT-RBF
here presented does not implement decoding. Thus, for a fair
comparison, we add the FFT computation complexity to the
PT-RBF one. The number of real-valued multiplications of the
FFT was obtained from [27] (see Table I on page 154, three-
BF and length 64 results in 248 real-valued multiplications).
Table III presents the computational complexities of the PT-
RBF with FFT and the DNNs proposed by Ye et al. [12]
(8 RVNNs with five layers each, containing 256, 500, 250,
120, and 16 neurons, respectively). Note that, as Ye et al. [12]
handle two OFDM symbols at a time, we multiply the PT-
RBF with FFT computational complexity by two. The number
of subcarriers is K = 64 and the PT-RBF is considered
with Nn = 2, 048 neurons (the maximum number of neurons
implemented in this work).

TABLE III
COMPUTATIONAL COMPLEXITIES OF THE PT-RBF WITH FFT AND THE

WORK OF YE ET AL. [12].

Stage PT-RBF with FFT Ye et al. [12]

Training 4,252,400 5,835,344
Inference 1,581,552 2,279,360

From Table III, in an equivalent scenario, the proposed
approach has approximately 30% less complexity compared
with the work of Ye et al. [12]. For a similar complexity,
we could extend the PT-RBF to about Nn = 2, 900 neurons.
Moreover, it is important to highlight that in the inference
phase, our approach generates 100% of useful information
since no pilot is necessary. On the other hand, the useful
information rate (not taking the CP into account) of Ye et
al. [12] is given by 100 × (Np − K)/Np [%], where Np is
the number of pilots per OFDM symbol. Then, for K = 64
subcarriers and Np = 8 pilots, the useful information rate is
87.5%. Consequently, the proposed approach presents a lower
computational complexity with a higher useful information
rate.

VI. RESULTS

In order to represent a practical scenario, we set the simu-
lation system with the 3GPP TS 38.211 specification for 5G
physical channels and modulation [28]. The OFDM is defined
with 240 kHz subcarrier spacing, 64 active subcarriers, and a
block-based pilot scheme with a preamble of 5, 000 OFDM
symbols. Symbols are modulated with quadrature phase shift
keying (QPSK).

Based on the tapped delay line-A (TDL-A) from the
3GPP TR 38.901 5G channel models [29], the massive MIMO
channel follows the TDLA100 from the 3GPP TR 38.104 5G
radio base station transmission and reception [30]. The channel
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Fig. 3. BER results of the proposed approach, MMSE, and LS channel
estimation algorithms with and without CP. Solid lines regard results without
CP and dashed lines with CP.

is described with 12 taps, with varying delays from 0.0 ns
to 290 ns and powers from -26.2 dB to 0 dB. A Rayleigh
distribution is used to compute the sample-spaced multipath
channel h[n].

The PT-RBF operates with 64 inputs and outputs and one
hidden layer with Nn Gaussian neurons. The inputs are taken
from the FFT outputs. The PT-RBF outputs are equalized
symbols. Each OFDM symbol from the preamble is handled
as a sample for training. The PT-RBF is trained for 200 epochs
with a shuffle, to improve convergence. The learning rates
were optimized, by trial and error, as ηw = 0.02, ηb = 0.02,
ηγ = 0.02, and ησ = 0.01.

Fig. 3 shows the results of the proposed PT-RBF for joint
channel estimation and the classical MMSE and LS algo-
rithms. In this comparison, we have set Nn = 2048 neurons. It
is important to highlight that, as results are discussed in terms
of bit energy to noise power spectral density ratio (Eb/N0), we
take the CP into account to plot the bit error rate (BER). Also,
we consider a pre-FEC (pre-forward error correction) BER of
2× 10−2 [31] for comparison. In the best-case scenario, with
a CP long enough to cover all channel impulses (17 samples),
the PT-RBF presented similar results with MMSE, and the
LS achieved an inferior performance of 2.91 dB. On the other
hand, in the worst-case scenario (i.e., without CP), the PT-RBF
approach presents better performance, surpassing the MMSE
and LS by about 2.68 dB and 10.51 dB, respectively. This
better performance follows the results demonstrated in [12],
but with lower computational complexity.

Fig. 4 shows the PT-RBF performance without CP, depend-
ing on the number of neurons Nn. In Fig. 4, we magnify
the Eb/N0 results for a BER = 2 × 10−2 for comparison.
As expected, the performance decays with Nn reduction.
However, reducing the number of neurons by half, from 2, 048
to 1, 024, only impacts 0.37 dB performance. When reducing
the complexity by one eighth (i.e., from 2, 048 to 256 neurons),
the Eb/N0 is worsened by only 0.8 dB.
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VII. CONCLUSIONS

This work proposes a complex-valued neural network
(CVNN) for joint channel estimation and equalization in
OFDM systems without a cyclic prefix. Unlike previous works
in the literature, where neural networks were employed to
handle both channel estimation and decoding, we focus solely
on addressing channel imperfections. As a result, our neural
network does not need to learn the FFT decoding, thereby
reducing its computational complexity. It is preferable to
keep the FFT mapping outside of the neural network since
it can be implemented with very low computational com-
plexity. Our results demonstrate that the proposed PT-RBF
outperforms both MMSE and LS algorithms. Furthermore,
the computational complexity can be reduced by half at the
cost of an additional 0.37 dB. In future works, we plan to
implement other well-known CVNNs and to test for other
system and channel imperfections, such as channel dynamics
and nonlinearities.
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