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A Multi-Faceted Approach to Maritime Security:
Federated Learning, Computer Vision, and IoT in

Edge Computing
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Abstract— Brazil faces several challenges related to maritime
monitoring, including illegal fishing, drug trafficking, oil spills,
and other environmental hazards. The approach aims to au-
tomate the detection and analysis of maritime activity, enabling
faster and more accurate decision-making for improved maritime
security. The computer vision algorithms used in the approach
are designed for object detection and classification, and the
federated learning approach is used to train the models while
preserving data privacy. The results obtained by the final
computer vision model and algorithm are presented, and the
challenges faced in developing robust CV models and improving
classification accuracy are discussed. The proposed approach
offers a promising direction for improving maritime security and
inspires further research in this area.
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I. INTRODUCTION

Monitoring the maritime environment is a critical task for
ensuring maritime safety, security, and environmental protec-
tion. Brazil, as a country with a long coastline and extensive
maritime borders, faces several challenges like illegal fishing,
drug trafficking, oil spills, and other environmental hazards
related to maritime monitoring [1]. However, recent advances
in Computer Vision (CV) and artificial intelligence (AI) have
opened up new possibilities for improving the efficiency and
effectiveness of maritime monitoring systems. These tech-
nologies can help to automate the detection and analysis
of maritime activity, allowing for faster and more accurate
decision-making [2].

At the same time, these monitoring systems generate and
handle large volumes of critical data. At the same time, it is
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also highly sensitive and needs to be protected against unau-
thorized access, manipulation, and theft. Federated Learning
(FL), a Machine Learning (ML) technique that allows for
decentralized model training without sharing raw data, can
help address some of these challenges. In this approach, data
remains on local devices or servers, and only model updates
are shared between devices, allowing collaborative model
training without exposing sensitive data to potential threats
[3]. In such dense and remote scenarios, it is often not feasible
to transfer all the data to a central server for model training
due to limited bandwidth and energy constraints. FL, which
enables distributed devices to collaboratively learn a global
model without sharing their data, is therefore an attractive
approach.

Furthermore, the Federated Average (FedAvg) algorithm can
be customized to accommodate the specific constraints and
requirements of IoT devices. By utilizing the FedAvg algo-
rithm [4], IoT applications can achieve better accuracy, energy
efficiency, and scalability while maintaining data privacy and
security. This combination allied with the correct architecture
allows the implementation of edge CV capabilities in low-
power devices in IoT scenarios. The implemented architecture
needs to be powerful and the same time lightweight to sup-
port IoT devices characteristics. SqueezeNet is a lightweight
neural network architecture that has been designed to run
efficiently on low-power and resource-constrained devices [5].
This makes it an ideal choice for implementing CV capabilities
in IoT devices where resources such as processing power,
memory, and battery life are limited.

This article presents an IoT application that runs on the edge
and is suitable for scenarios where data is sensitive. Also,
results presented by the final CV model and algorithm are
shown, and conclusions about the application are discussed.

II. RELATED WORKS

Researchers have developed classification algorithms to
identify different types of ships based on RGB images. Where
diverse algorithms including a bag of features, support vector
machines (SVM), and convolutional neural networks (CNN)
are used [6]. On the other hand, VGG19 has presented a better
accuracy than capture by the cited technique, reaching a 95.8%
rate of accuracy [7]. Furthermore, image processing via CV
models can face several problems regarding CV illumination
effects, potential occlusion, orientation, scale, and variety of
objects [8]. Not only that, the privacy and security of the
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captured data must be taken into consideration for commercial
and private uses [9]. Currently, much of the work found in the
literature takes into consideration only technical aspects and
performance metrics of the models [10].

Related to the FL, several researchers already explored the
application of this training method in the monitoring system.
Also, researchers already propose FL as a solution to the chal-
lenges of traditional ML approaches in maritime environments
[11]. In fact, FL has become a key solution for building ML
models that rely on distributed datasets, especially in emerging
networks like IoT systems. However, the heterogeneous nature
of devices and models in complex IoT networks has made it
challenging for FL to perform well, requiring the development
of new algorithms, models, and protocols [12]. In addition,
IoT in Maritime Transportation Systems (MTSs) is creating
new revenue opportunities and improving efficiency while
reducing costs. By enabling real-time tracking of shipments,
pre-emptive maintenance, route optimization, reduced fuel
consumption, and improved safety, the IoT is transforming
MTSs into a data-driven and digitalized industry. The solution
to challenges faced by existing wireless federated learning
(WFL) schemes in unstable wireless channel conditions is
already proposed. The proposed solution is a software-defined
empowered efficient WFL architecture with embedding Low-
Density Parity-Check. (LDPC) communication coding, which
improves the anti-interference ability and GPU-CPU acceler-
ation ability during wireless transmission [13].

III. DEVELOPMENT, TRAINING, AND IMPLEMENTATION

The proposed application relies on heterogeneous devices
both in terms of software and hardware. Firstly, two Raspberry
Pi 4B boards along with an Nvidia Jetson Nano board were
used as End Nodes of the network, while an Ideapad Gaming
3I was used as an aggregator server in the application.

First of all, the two Raspberry Pi 4B boards do not have
a Graphics Processing Unit (GPU), and must do all visual
processing of the images directly in their processor. The two
boards have a Broadcom (Cortex-A72 quad-core of up to 1.5
GHz), while the Nvidia Jetson Nano board has a quad-core
core Arm A57 processor of up to 1.43 GHz and the Notebook
has an Intel Core i5-10300H processor of up to 4.50 GHz.
However, the Nvidia Jetson Nano and Ideapad Gaming 3I
devices have graphics processing support that enables more
efficient and faster image processing.

Regarding software, the Linux Operating System (OS) was
used on all the devices, changing only the distros installed
on each one. The Raspberry Pi boards have Raspberry PI
O.S., Idealpad Gaming 3i with Arch Linux, and the Nvidia
Jetson Nano board with Ubuntu 20.04. The main framework
used to build the FL was Flower (FL Framework), which
is an open-source hold-out framework for building federated
training systems. The framework provides a set of abstractions
and Application Programming Interface (APIs) for building
systems and it is designed to be flexible and extensible,
allowing users to customize various aspects of the training
process, such as the communication protocol, optimization
algorithm, and model architecture. Figure 1 illustrates the
application.

Fig. 1. Application simplified topology used in the FL approach.

The Federated Learning (FL) approach enables the imple-
mentation of artificial intelligence techniques in heterogeneous
devices, as in the scenario presented here. The Raspberry Pi
4B 4 GB (referred to as Raspberry Pi 4 I) has relatively
simple hardware, lacks GPU processing capabilities, but offers
4 GB of RAM for online image processing. These limitations
constrain some characteristics of the model and the training
process, including slow training speed, reduced batch sizes,
and limited model complexity. In contrast, the Raspberry Pi
4B 8GB (referred to as Raspberry Pi 4 II) provides more RAM
for image processing during model training, thereby increasing
the capabilities of the device.

However, it is important to allocate the devices appropriately
in real-world scenarios, considering the specific processing
requirements of each location. For instance, the Raspberry Pi 4
I could be implemented in coastal, beach, pier, or harbor envi-
ronments with a relatively low number of ships. The Raspberry
Pi 4 II is suitable for intermediate-level environments where
the number and movement of ships is not insignificant, but not
overly complex. On the other hand, the Jetson Nano should
be deployed in locations with a large number of images and
high computational power requirements.

An extremely important aspect of a good implementation
of an FL is the correct choice of aggregation strategy. The
proposed application makes use of Federated Averaging (Fe-
dAvg). FedAvg is a simple and effective algorithm for training
ML models in an environment. It has been successfully used in
a variety of applications, including image classification [14],
natural language processing [15], and much more. The FedAvg
algorithm used in the application works as follows:

1) Initialization: The server initializes a global model,
which is a set of weights for the CV model that will
be trained.

2) Client Selection: The server randomly selects a subset
of clients to participate in the training process.

3) Local Training: Each selected client downloads the
current global model from the server, trains the model
on its local data, and computes an update to the model’s
weights.
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4) Weight Aggregation: Each client sends its model update
back to the server, which aggregates the updates to
compute a new global model.

5) Repeat: The server repeats the process of client selec-
tion, local training, and weight aggregation for a fixed
number of rounds or until convergence.

The Equation III presented below is the one used for
weighting and aggregating the weights sent by clients. In the
equation, ωt+1 is the updated global model at the end of round
t + 1 in FedAvg. The sum over k represents the aggregation
of the updates from all K clients in the random subset St

selected by the server in round t.

ωt+1 =

K∑
k=1

nk

n
ωk
t+1.

These are two scripts in Python, one for the aggregator
server and one for the other clients. Starting with the server
script, where the server aggregates update from the clients to
create a global model. The server initializes the global model
at ω0 and iterates over rounds, selecting a subset of clients St

in each round. The clients in St update their local model using
the current global model ωt and return the updated model to
the server. The server then averages the updates from all clients
to produce the new global model ωt+1.

The client code implements the local update step for each
selected client thought the Algorigtms 2. The client partitions
its data into batches and performs several local epochs of
gradient descent using batch size B and learning rate η. The
updated model w is then returned to the server for aggregation.
Overall, FedAvg enables distributed training of ML models
while keeping the data local to each client, which can help
address privacy concerns and reduce communication costs.

Algorithm 1 Server
initialize ω0

for each round t = 1,2, ... do
N ← n
St ← (random set of m clients)
for each client k ∈St in parallel do

ωk
t+1 ← ClientUpdate(k, ωt)

end for
ωk
t+1 ← ωt+1 =

∑K
k=1

nk

n ωk
t+1

end for

Algorithm 2 Client
β ← (split Pk into batches of size B)
for each local epoch i from 1 to E do

for batch b ∈β do
ω ← ω − η▽ (w; b)

end for
end for
return w to server

The communication protocol used for the joint learning of
the devices was gRPC. gRPC is a high-performance, open-
source framework developed by Google that is used to build

fast and efficient remote procedure call (RPC) systems. In a
system that uses gRPC, the server acts as the gRPC service
provider, while the clients act as the gRPC clients. The server
exposes a set of gRPC methods that the clients can call,
such as "get_model" or "update_weights". The clients can
also expose their own gRPC methods, such as "get_data" or
"upload_gradients".

Finally, the architecture used for ship classification was
SqueezeNet, a deep neural network architecture for image
classification that was introduced in 2016. The key innovation
of SqueezeNet is its ability to achieve state-of-the-art accuracy
on image classification tasks while using a much smaller
number of parameters compared to other deep neural networks.
The architecture of the neural network consists of a series
of convolutional layers followed by pooling layers and fully
connected layers. The convolutional layers use a combination
of 1x1 and 3x3 filters to extract features from the input image,
while the pooling layers reduce the spatial dimensions of the
feature maps. The most distinctive feature of SqueezeNet is
its use of "fire" modules, which are composed of a squeeze
layer and an expanded layer. The squeeze layer consists of
1x1 convolutions that reduce the number of input channels,
while the expanding layer consists of a combination of 1x1 and
3x3 convolutions that increase the number of output channels.
Figure 2 illustrates the SqueezeNet architecture used in the
application:

Fig. 2. Squeezenet simplified architecture illustration.

A dataset present in the Kaggle Data Science community
was used to create the final dataset presented for the model
during its training and validation. This is because several data
augmentation techniques were added to extend the original
image base, among them:

• Brightness: Between -50% (a.a) and +50% (a.b);
• Noise: Up to 10% of pixels (b).
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• Crop: 0% Minimum Zoom, 20% Maximum Zoom (c);
• Blur: Up to 3px (d);
The Figure 3 visually presents an image with the data

augmentation as example. The dataset had an initial size of
6596 images, while the final dataset had a total of 17648
images. This difference shows an increase of 167.56%, greatly
increasing the variety of images presented to the model during
training.

Fig. 3. Data augmentation dataset samples.

First of all, it should be taken into consideration that the
final dataset must be divided equally for the three devices.
For, the training of the model via FL takes place individually
on each available board in the system. Therefore, the amount
of images available on each board must be equal. Another
important aspect to be highlighted regarding the training is
the equal division of the dataset into identical training and
validation dataset. Not only that, the choice of images to be
transferred to each device should be random. For this, a Python
algorithm was used to create the individual dataset for each
device.

As for splitting the dataset, 80% of the dataset was used for
training and 20% for testing the individual devices. Also, the
same parameters for learning rate and epochs were used. The
optimizer selected for training the models was Adam. Adam is
a popular optimization algorithm for training neural networks,
which stands for Adaptive Moment Estimation. It is known for
its efficiency and robustness in deep learning and has become
one of the most widely used optimization algorithms. Epochs
and rounds are two other key concepts used to describe the
training process of a model across multiple devices or clients.
An epoch refers to a single pass of the training data through
the model. During each epoch, the model makes predictions
on the training data, calculates the loss, and updates the model
parameters to improve its accuracy only locally. But, a round
can be thought of as a collaborative learning iteration between
multiple client devices and a central server. During a round,

each client device trains its local ML model on its own data,
and the central server aggregates the updated model parameters
from all client devices to improve the global model. As for
the configuration used in training the models, this is shown in
Table I.

TABLE I
THE PARAMETERS USED DURING THE TRAINING.

Parameters Value
Epochs 2
Rounds 5
Learning Rate 0.001

Three metrics were used to validate the performance of
the final model, being (I) Loss, (II) Error Rate, and (III)
Accuracy. The Loss metric measures the difference between
the predicted output and the actual output of the model, while
the Error Rate metric measures the proportion of incorrectly
classified samples in the dataset. The accuracy, on the other
hand, refers to the proportion of correctly classified samples in
the dataset. Figure 4 illustrates the Error Rate (f.a), Accuracy
(f.b), and Loss Function per epoch presented by the model
during the model training for validation (f.c) and training (f.d)
set. The curves present in the graphs show the behavior of the
three devices throughout the training individually. However, it
should be taken into account that every two epochs FL occurs
and the aggregator server receives the individual weights of
each model, aggregates them and returns a global model for
all of them.

From the curves presented it is possible to extract that the
model performed during task learning, achieving a reasonably
low error rate of 3.25% and at the same time a low loss of
10.81%. The accuracy presents a satisfactory result, reaching
98% during the training. However, the model seems to have
reached a plateau zone in the neighborhood of 10%, failing to
reach lower values in the validation dataset. Meanwhile, the
loss on the training dataset continues to decrease, presenting
a possible over-fitting of the model.

IV. CONCLUSIONS

This paper proposes a multi-faceted approach to maritime
security that uses FL, CV, and IoT in edge computing. The
approach can automate the detection and analysis of maritime
activity, improving decision-making for better maritime secu-
rity. The approach has advantages such as preserving data
privacy, reducing manual intervention, and processing data
closer to the source. However, challenges such as developing
robust CV models, improving classification accuracy, and
addressing over-fitting issues need to be addressed in future
work. The proposed approach offers a promising direction for
improving maritime security and inspires further research in
this area.
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