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Abstract— The complexity and vastness of the ocean make
maritime monitoring a critical aspect of both national security
and international trade. This paper investigates the potential of
computer vision (CV) technology for monitoring maritime activ-
ity, with a particular emphasis on ship classification. The study
compares various CV architectures and techniques, highlighting
their relative strengths and weaknesses. The main objective of
using CV in this context is to identify and track vessels and
other objects of interest, which could assist in enforcing maritime
regulations, increasing trade efficiency, and detecting security
risks. The paper presents numerical results obtained during the
training and validation of these architectures, providing valuable
insights into how CV technology can be employed to improve
maritime monitoring.
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I. INTRODUCTION

Maritime monitoring is a critical aspect of national security
and international trade [1]. This is because the ocean is a
vast and complex environment, and monitoring it can be
challenging. Improving maritime monitoring can involve using
computer vision (CV) technology, which allows computers to
interpret and analyze visual data [2]. CV can aid in maritime
monitoring through different images and videos from vessels.
The primary goal of using is to identify and track vessels and
other objects of interest. This can include everything from
fishing boats to cargo ships to military vessels. By monitoring
vessel traffic in real-time, authorities can identify potential
security threats, enforce maritime regulations, and improve the
efficiency of international trade.

There are many different CV techniques that can be used
for maritime monitoring, including object detection [3], object
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recognition [4], and image classification [5]. Object detection
involves identifying the presence of specific objects in an
image or video, while object recognition involves identifying
the type of object. Image classification is a more general
technique that involves classifying an entire image based
on its content. In the marine monitoring scenario, image
classification can be used to distinguish between the hundreds
of variations of existing markings or just the type of each one.
But, one of the key challenges in using vision capabilities for
maritime monitoring is selecting the right architecture for the
task. This is because there are many different architectures
to choose from, each with its strengths and weaknesses for
particular tasks.

Convolutional Neural Networks (CNNs) are particularly
well-suited for image classification tasks [6], as they can
automatically learn to recognize complex patterns in images.
They work by applying a series of filters to an input image,
each of which detects a specific type of feature [7]. By
combining the outputs of these filters, the network can identify
higher-level features and classify the image accordingly. In
addition to the general CV architectures, there are also specific
pre-trained neural networks that have been used for image
classification tasks. Some popular examples include ResNet,
SqueezeNet, DenseNet, VGG, and AlexNet. These networks
differ in terms of their architecture, computational require-
ments, and performance metrics [7].

In addition to general CV architectures, there are pre-
trained neural networks specifically designed for image clas-
sification tasks. These networks, such as ResNet, SqueezeNet,
DenseNet, VGG, and AlexNet, have been trained on large-
scale image datasets and achieved impressive performance
across various domains. Pre-trained networks offer the ad-
vantage of transfer learning, where the knowledge gained
from training on one dataset can be transferred and applied
to a different but related dataset. By fine-tuning pre-trained
networks on maritime-specific data, authorities can leverage
their learned features and accelerate the development of accu-
rate and efficient maritime monitoring systems. Also, transfer
learning offers several advantages, including reduced training
time, improved performance, generalization to new tasks,
effective utilization of limited labeled data, extraction of high-
level features, and domain adaptation.

The choice of the CV technique and architecture depends on
several factors, including the specific objectives of maritime
monitoring, the available data, computational resources, and
performance requirements. For example, if the goal is to detect
and track vessels in real-time, object detection techniques
may be more suitable. On the other hand, if the focus is on
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categorizing vessels into different types, image classification
techniques can be applied. It is essential to consider the
strengths and limitations of each technique and architecture to
ensure their compatibility with the requirements of maritime
monitoring applications.

This article explores the use of CV for maritime monitor-
ing in more detail and presents some architectural results.
In addition, different CV architectures and techniques are
compared, highlighting their strengths and weaknesses for ship
classification. Brief descriptions of each architecture are given,
and some numerical results obtained during the training and
validation are presented.

II. RELATED WORKS

When applying CV techniques for maritime monitoring,
selecting the appropriate architecture for the task is essential.
CNNs have proven to be highly effective for image clas-
sification tasks. CNNs excel at automatically learning and
recognizing complex patterns and features in images. Also, the
ability of CNNs to capture intricate visual information makes
them well-suited for maritime monitoring applications.

The choice of the CV technique and architecture depends on
several factors, including the specific objectives of maritime
monitoring, the available data, computational resources, and
performance requirements. For example, if the goal is to detect
and track vessels in real-time, object detection techniques
may be more suitable. On the other hand, if the focus is on
categorizing vessels into different types, image classification
techniques can be applied. It is essential to consider the
strengths and limitations of each technique and architecture to
ensure their compatibility with the requirements of maritime
monitoring applications.

III. MODELS COMPARISON

Image classification task counts with a large number of
deep learning architectures available in the literature, where
each architecture has its own characteristics. The architectures
chosen to be trained and compare in this study are as follows:
(I) resnet18, (II) resnet34, (III) resnet50, (IV) resnet101,
(V) resnet152, (VI) squeezenet1_0, (VII) squeezenet1_1,
(VIII) densenet121, (IX) densenet169, (X) densenet201, (XI)
densenet161, (XII) vgg16, (XIII) vgg19, and (IXX) alexnet.

The ResNet architectures (ResNet18, ResNet34, ResNet50,
ResNet101, and ResNet152) are known for their deep struc-
ture, which allows them to capture complex features and
patterns in images. They are suitable for tasks that require
high accuracy but may be slower and require more computa-
tional resources than other architectures. SqueezeNet1.0 and
SqueezeNet1.1 are lightweight architectures designed to have
a small number of parameters and be fast to train and execute.
They are suitable for tasks where speed and memory efficiency
are important but may sacrifice some accuracy compared to
other architectures.

DenseNet (DenseNet121, DenseNet169, DenseNet201, and
DenseNet161) are similar to ResNet in their deep structure
but have a unique feature of densely connected blocks, which
allows for better feature reuse and efficient parameter usage.

They are suitable for tasks that require high accuracy and
are computationally efficient. VGG16 and VGG19 are classic
deep learning architectures that have been widely used in CV
tasks. They have a relatively simple structure compared to
ResNet and DenseNet but have a large number of parameters,
which can be both an advantage and a disadvantage depending
on the task. Finally, AlexNet is another classic deep learning
architecture that was one of the first to achieve high accuracy
in the ImageNet challenge. It has a relatively shallow structure
compared to ResNet and DenseNet but is still suitable for tasks
that require high accuracy and speed.

The choice of the deep learning architecture for a specific
task depends on several factors, such as the size and complex-
ity of the dataset, the computational resources available, and
the desired accuracy and speed of the model. In the case of
maritime monitoring, the classification of ships from images
requires a model that can handle a large number of classes
and detect subtle differences in the appearance of ships. Table
I brings more details about the presented architectures.

TABLE I
MODELS CHARACTERISTICS, PARAMETERS, PARAMETERS SIZE AND

MODEL ESTIMATED SIZE.

Model Parameters Param. size Est. Size

resnet18 11,689,512 44.59 107.96
resnet34 21,797,672 83.15 180.01
resnet50 25,557,032 97.49 384.62
resnet101 44,549,160 169.94 600.25
resnet152 60,192,808 229.62 836.78
squeezenet1.0 1,248,424 4.76 97.14
squeezenet1.1 1,235,496 4.71 59.05
densenet121 7,978,856 30.44 203.19
densenet161 28,681,000 109.41 418.81
densenet169 14,149,480 53.98 255.39
densenet201 20,013,928 76.35 325.33
vgg16 138,357,544 527.79 747.15
vgg19 143,667,240 548.05 787.31
alexnet 61,100,840 233.08 242.03

The development of a model is a complex process that
involves several steps, with model training being one of the
most crucial steps. CV models are trained on a large dataset
to identify patterns and learn from the data. The training
process involves selecting an appropriate algorithm, setting the
hyperparameters, and feeding the model with a proper dataset
to learn from. The first step in model training is to prepare
the data. This includes preprocessing the data, cleaning it, and
splitting it into training, validation, and test sets. The dataset
used is available from the Kaggle community and is ready to
use, requiring no pre-processing or annotation steps. In this
way, several hours of work can be saved and used in other
stages of model development. The dataset consists of five
ship classes grouped in 5626 images. Figure 1 shows how
the images are divided among the classes:

The dataset was split into training and validation in the
proportions of 80% and 20%, respectively. Splitting a dataset
into training and validation sets is a common practice in CV
training. The purpose of this is to use the training set to
train a model, and then use the validation set to evaluate
the performance of the model on data that it has not seen
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Fig. 1. Amount of observation in each classe in the dataset.

Fig. 2. Images from the dataset.

before. The next step is to feed the model with the prepared
dataset and start training. During the training process, the
model learns from the input data and tries to identify patterns
that can be used to accurately classify new images. The article
aims to compare different architectures to the same dataset and
training parameters (Optimization Function, Adam, Learning
Rate: 0.001, Epochs: 25), helping to identify the weight and
performance of each architecture to properly classify ships.
It is important to monitor the training process closely, as
the model can overfit or underfit the data, leading to poor
performance on new data. To prevent overfitting. Overfitting
occurs when a model is too complex and performs very well on
the training data but poorly on new data. Underfitting occurs
when a model is too simple and performs poorly on both the
training data and new data.

Table II, outlines the performance of various deep learning
architectures on a ship classification task. The models were
evaluated using three metrics (expressed as a percentage):
model Loss, Error Rate (ER), and Accuracy. The ResNet
architectures (ResNet18, ResNet34, ResNet50, ResNet101,
and ResNet152) have the lowest ER and high accuracies,
with ResNet101 having the lowest ER of 0.27%. ResNet101
also has the lowest model loss of 0.001%, indicating that it
is a very robust and accurate model for the ship classifica-
tion task. SqueezeNet1.1 has a much higher ER and lower
accuracy compared to other models, indicating that it may
not be the best choice for this task. The other models, in-
cluding DenseNet architectures (DenseNet121, DenseNet161,
DenseNet169, and DenseNet201), VGG16, VGG19, and
AlexNet, have varying levels of performance, with some
models performing better than others.

Loss (1): Commonly used in machine learning called the
categorical cross-entropy loss. This loss function is used when
dealing with classification problems where the output variable
(y) and the predicted output variable (ŷ) are both categorical.

Loss(y, ŷ) = − 1

N

N∑
i=1

C∑
j=1

yi,j log(ŷi,j). (1)

Error Rate (2): Provides a measure of the models perfor-
mance in terms of misclassification, indicating the proportion
of samples that were classified incorrectly.

Error Rate =
Number of misclassified images

Total number of images
. (2)

Accuracy (3): Is a commonly used metric to evaluate the
performance of a classification model. It measures how well
the model predicts the correct classes for a given set of data.

Accuracy =
Number of correctly classified images

Total number of images
. (3)

Overall, the ResNet architectures appear to be the best
choice for the ship classification task, with ResNet101 being
the most accurate and robust model. However, the choice of
model ultimately depends on the specific requirements of the
task, and a careful analysis of each model’s strengths and
weaknesses is necessary to make an informed decision.

Although the sum of the two metrics is equal to 1 due
to the complementary nature of the two, each metric brings
valuable information about different aspects of the model,
which allows for a more complete and informed analysis of its
performance. For example, the ER metric represents the ratio
of incorrect classifications to total samples. This metric pro-
vides a direct idea of the model’s ER, which can be crucial in
scenarios where the costs associated with classification errors
are asymmetric. In addition, the ER can help identify specific
classes or situations where the model is having difficulties. The
Accuracy metric, on the other hand, measures the proportion
of correct classifications out of the total samples. It is a widely
used metric to assess the overall performance of the model,
providing an overview of how well it is doing in terms of
correct predictions. Accuracy is especially useful when all
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TABLE II
MODEL PERFORMANCE METRICS.

Model Loss % Error Rate % Accuracy %

resnet18 1,85 0,45 99,54
resnet34 1,50 0,30 99,69
resnet50 1,13 0,36 99,63
resnet101 0,001 0,27 99,72
resnet152 1,70 0,30 99,69
squeezenet1.0 1,94 0,57 99,42
squeezenet1.1 23,94 6,01 93,98
densenet121 0,95 0,27 99,72
densenet161 0,91 0,24 99,75
densenet169 2,02 0,42 99,57
densenet201 1,11 0,30 99,69
vgg16 2,02 0,54 99,45
vgg19 0,82 0,27 99,72
alexnet 2,55 0,84 99,15

classes are of relatively equal importance and when there is
no significant imbalance between classes.

Figure 3 illustrates several performance metrics of the model
during training. It is noticeable the homogeneity in the behav-
ior of all models, although some excel in the first few training
epochs. The model that presents the worst performance during
this stage is Squeezenet in version 1.1. However, the first
version of the architecture performed better in the same dataset
and training parameters. Figure f.a illustrates ER Curve, where
it is visible the homogeneity in the behavior of all models,
although some excel in the first few training epochs. However,
the first version of the architecture performed better in the
same dataset and training parameters, requiring most studies
about this performance disparity. However, it is important to
note that transfer learning applied from pre-trained models
on the COCO dataset seems to have increased the speed of
convergence of the models. For, it is notable a good perfor-
mance of all models at the beginning of the training, presenting
a ER of less than 10%. However, a comparison between
both training methods is necessary in order to guarantee this
hypothesis.

Continuing with the analysis, it is evident from Figure f.b
that all models exhibit a consistent behavior during the training
epochs, with the exception of Squeezenet 1.1. Initially, all
models start with an initial loss of less than 30% in the
validation set, indicating some level of understanding of the
ships dataset. As the training progresses, the models gradually
improve their accuracy and approach values close to 0%
loss, indicating convergence. However, Squeezenet 1.1 stands
out as the model with the worst performance during this
stage (23.94%). Despite the other models showing consistent
improvement, Squeezenet 1.1 seems to struggle to converge
and achieve a low loss value. This performance disparity raises
the need for further investigation and analysis. Interestingly,
when considering the performance of the first version of
the model, it outperformed the version 1.1 under the same
dataset and training parameters. This observation highlights
the importance of understanding the architectural changes and
modifications made between the two versions that may have
affected the model’s performance

Further, Figure f.c presents the models loss on the training

set. Similarly, it is possible to see homogeneity in the behavior
of all models during the epochs. All models showed an
accuracy above 92% in the very first epochs and showed a
convergence to the steady state in less than 20 epochs. Again,
the Squeezenet 1.1 model showed turbulent training relative
to the others and does not seem to have converged by the
end of the 25 epochs. The Squeezenet 1.1 model have the
less complex and intricate architecture compared to the other
models. This lack of complexity could lead to challenges in
optimizing the model during training, resulting in a turbulent
training process. The hyper-parameters used during training,
such as learning rate, batch size, or optimization algorithm,
can significantly impact the training process. If the hyper-
parameters were not well-tuned for the Squeezenet 1.1 model,
it could contribute to the observed turbulent behavior. Inappro-
priate hyper-parameter settings might cause unstable updates,
hinder convergence, or result in oscillating loss values.

Finally, the Figure f.d shows and compare the Loss Curve
in the training set. It is evident that all models started with
a relatively low loss of less than 6%. This initial perfor-
mance indicates that the models had a basic understanding
of the training data right from the beginning. Notably, the
behavior of Squeezenet 1.1 stands out in this comparison.
Initially, it lagged behind the other models, exhibiting a
slower convergence rate. However, as the training progressed,
Squeezenet 1.1 gradually caught up with the other models
and approached similar loss values. This observation indicates
that although Squeezenet 1.1 had a slower start, it eventually
managed to learn and converge effectively. The homogeneity
of the Loss Curve among the models further highlights their
similar learning patterns and abilities to adapt to the training
data. Despite their architectural differences and performance
disparities during the initial stages, the models demonstrate
a shared characteristic of gradually converging to lower loss
values in the training set.

IV. CONCLUSIONS

In conclusion, this study has demonstrated the potential of
CV technology for maritime monitoring, particularly in ship
classification. The comparison of different CV architectures
and techniques has highlighted their strengths and weaknesses,
providing valuable insights for future research. The numerical
results obtained during the training and validation of these
architectures have shown promising performance in identify-
ing and tracking vessels. By improving maritime monitoring
through CV technology, authorities can enforce regulations,
improve trade efficiency, and enhance national security. Over-
all, this study contributes to the growing body of research on
how a CV can be used to enhance various applications in the
maritime industry.
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