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Highly Accurate Approximations for the Sum of
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Abstract— The sum of cascade envelopes is prevalent in a
diverse range of applications, techniques, and scenarios within
wireless communication systems. However, the intricate nature
of the sum renders it challenging to obtain an exact statistical
characterization, fostering a growing interest in the pursuit of
precise yet approximate formulations. In this work, we provide
simplified yet accurate approximations for the probability density
function and cumulative distribution function of the sum of
independent but not identically distributed (i.n.i.d.) double-
Nakagami-m envelopes. Furthermore, leveraging these statistical
insights, we investigate the performance of an equal gain com-
bining receiver operating over i.n.i.d. double-Nakagami-m fading
channels and propose performance metrics accordingly. We also
derive asymptotic expressions and quantify the diversity and
coding gains. Finally, we validate our findings through Monte-
Carlo simulations.

Keywords— Approximations, cumulative distribution function,
double-Nakagami-m, probability density function, sum of cascade
envelopes.

I. INTRODUCTION

The sum of cascade envelopes plays a pivotal role in
wireless communication systems particularly when charac-
terizing the fading phenomena across diverse applications,
techniques and scenarios [1]–[4]. However, its exact statistical
characterization, specifically the probability density function
(PDF) and cumulative density function (CDF), can be cum-
bersome to obtain. The complexity involved in the search for
exact formulations can be alleviated by the use of closed-
form approximations that may ultimately yield highly accurate
results.

Lately, the double-Nakagami distribution has been exten-
sively studied as means of describing the fading experimented
by links in non-orthogonal multiple access (NOMA) systems
as well as in vehicle-to-vehicle (V2V) and reconfigurable in-
telligent surface (RIS) assisted communications [5]–[8]. While
the derived statistics and performance metrics are novel, they
often entail complexity or limitations. For instance, in [7]
formulations for the statistics of a RIS-assisted communication
system over Nakagami-m fading are presented in terms of
the Hankel transform and non-elementary functions. Also,
in [6] the distribution of the sum of double-Nakagami-m is
introduced with an application to a RIS-aided communication
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system. Although the PDF and CDF of the instantaneous
signal-to-noise ratio (SNR) are given in closed-form, they are
restricted to integer values of the shape parameter. In light
of this, accurate approximations have been introduced in the
literature allowing for simpler closed-form formulations of
the PDF, CDF and performance metrics in various commu-
nication systems experimenting double-Nakagami-m fading.
Specifically, the statistics of the sum of double-Nakagami-
m envelopes were approximated by means of the central
limit theorem (CLT), along with Generalized-K and Gamma
distributions in [9]–[11], which allowed for a comprehensive
analysis of NOMA and RIS-assisted communication systems.
Note, however, that such an approximation is reasonable in
case a significant number of elements in the sum is used, i.e.,
when the CLT is applicable.

The preceding discussion highlights the importance of
developing more accurate approximations for the sum of
double-Nakagami-m envelopes while maintaining simplicity
and tractability. Numerous approaches and distributions have
been introduced in the literature as means for approximating
the sum of cascade RVs (refer to [9]–[15] and the ref-
erences therein). However, to the best of our knowledge,
no studies have yet endeavored to approximate the sum of
double-Nakagami-m envelopes using a general fading model
such as α-µ [16]. The adoption of the α-µ model as an
approximation for the sum statistics of double-Nakagami-
m RVs is founded upon two fundamental factors: (i) the
model’s inherent mathematical simplicity and tractability, and
(ii) the extensive versatility and suitability exhibited by the
distribution across a diverse array of real-world scenarios
[17]–[21]. These attributes render the α-µ model as a highly
valuable choice for approximating the sum statistics in various
practical applications.

This research focuses on deriving approximate yet accurate
formulations for the PDF and CDF of the sum of i.n.i.d.
double-Nakagami-m envelopes. The derivation builds upon the
versatile α-µ fading model and is detailed in the subsequent
sections. Furthermore, we analyze the performance of a pre-
detection EGC receiver operating in a double-Nakagami-m
fading environment by deriving key metrics such as outage
probability (OP) and average symbol error rate (ASER). Addi-
tionally, we propose asymptotic expressions to further enhance
the understanding of system performance. The proposed ap-
proximations provide a valuable contribution by establishing a
tractable analytical framework, greatly facilitating the analysis
of communication systems. Note that, differently from [9]
our approach allows for every double-Nakagami-m envelope
involved in the sum to be i.n.i.d. Furthermore, our proposed
approximation does not rely on a large number of sums to
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achieve a highly accurate fitting, as observed in [9], [11].
The rest of this paper is organized as follows. Section II

introduces the problem formulation. Section III presents the
approximated sum statistics leveraging on the general α-µ
distribution. Section IV analyzes the performance of an EGC
diversity receiver. Section V discusses the numerical results.
Finally, Section VI summarizes the conclusions.

In what follows, Pr[·] denotes probability; f(·)(·), PDF;
F(·)(·), CDF; E[·] expectation; V [·], variance; Γ(·), the gamma
function [22, eq. (06.05.02.0001.01)]; γ(·, ·), the lower in-
complete gamma function [23, eq. (8.2.1)]; and ≃ denotes
“asymptotically equal to”.

II. PROBLEM FORMULATION

Let R be the sum of Zl RVs, i.e.,

R =

L∑
l=1

Zl, (1)

where Zl are double-Nakagami-m variates with PDF and CDF
given in [24], respectively, as
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in which {mi}2i=1 and {Ωi}2i=1 are the shape and spread
parameters of each Nakagami-m RV respectively, Kv(·) is
the modified Bessel function of the second kind of v-th order
[22, eq. (03.04.02.0001.01)], and Ga,b

c,d[·|·] is the Meijer’s G-
function [25, eq. (9.301)].

The n-th moment of cascaded Nakagami-m is given by

E [Zn
l ] =
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(
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)n/2
Γ
(
n
2 +mi

)
Γ(mi)

. (4)

Our primary aim is to derive approximate formulations for the
PDF and CDF of the sum presented in (1). The derivation is
addressed in the following sections. The proposed framework
enables the development of simplified yet precise formula-
tions for the sum statistics and performance metrics, which
hold great importance in understanding and analyzing various
wireless communication systems.

III. APPROXIMATED SUM STATISTICS

The statistics of R can be accurately approximated by the α-
µ fading model with PDF and CDF given in [16], respectively,
by

fR(r) =
αµµrαµ−1

r̂αµΓ(µ)
exp

(
−µ rα

r̂α

)
(5)

FR(r) =
γ (µ, µ rα/r̂α)
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, (6)

where α > 0 is the shape parameter, r̂ = α
√
E[Rα] is the

scale parameter, µ = E2
[
Rα
]
/V
[
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]
> 0 is the inverse of

the normalized variance of Rα, and the k-th moment is found
as

E
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. (7)

To attain a high level of accuracy, we employed a moment-
based technique to estimate the parameters of the α-µ PDF.
More specifically, we estimated the values of α, µ, and r̂ by
utilizing the precise moments of R. By numerically solving the
following system of transcendental equations we determine the
values of α, µ, and r̂
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where the moments of R can be calculated using
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IV. APPLICATION TO EGC

Capitalizing on the formulations derived in Section III, we
are going to analyze in an approximated but precise manner the
performance of an EGC receiver subject to double-Nakagami-
m fading.

The instantaneous SNR at the output of an L branch EGC
receiver experiencing double-Nakagami-m fading is given by

Υ =
ρ

L

(
L∑

l=1

Zl

)2

=
ρ

L
R2, (12)

where ρ = Es/N0 is the average SNR per symbol, Es is
the average energy per symbol and N0 is the power spectral
density of the noise.

The PDF and CDF of Υ can be readily obtain from (5) and
(6) by performing a transformation of variables, yielding in
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. (14)

In the following, performance metrics such as OP and ASER
are derived.

A. Outage Probability

The OP is defined as the probability that the instantaneous
SNR falls below a specified threshold γth, i.e.,

Pout
∆
= Pr [ Υ ≤ γth] = FΥ(γth). (15)
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From (15) and (14) the OP can be found as

Pout =

γ

(
µ, µ r̂−α

(
Lγth
ρ

)α/2)
Γ(µ)

. (16)

Moreover, we investigate the system performance in the high
signal-to-noise ratio (SNR) regime, specifically as ρ → ∞.
With the aid of [26, eq. (8.2.6)] and [26, eq. (8.7.1)] we rewrite
(16) using an infinite series representation. As the first term
dominates the series the asymptotic OP can be obtained as

Pout ≃ (Oc ρ)
−Od , (17)

where Od = αµ/2 is the diversity gain, and Oc is the coding
gain and is given by

Oc =
r̂2 Γ(µ+ 1)

2
αµ

µ2/α Lγth
. (18)

B. Average Symbol Error Rate

The ASER for an EGC receiver is given by [27, eq. (9.61)]

Ps =
1

2
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√
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)
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where erfc(·) is the complementary error function [26, eq.
(7.1.2)] and G is a modulation dependent parameter. From (19)
and (5) and after some algebraic manipulations the ASER can
be obtained as follows
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The asymptotic ASER can be found by taking the first term
of (20) since it dominates the series and is given as

Ps ≃ (Gc ρ)
−Gd , (21)

where Gd = αµ/2 is the diversity gain, and Gc is the coding
gain which is given by

Gc =
G r̂2

Lµ2/α

(
Γ
(
1
2 (αµ+ 1)

)
2
√
π Γ(µ+ 1)

) 2
αµ

. (22)

It is worth emphasizing that the formulations presented in
Sections III and IV make a significant contribution to the
existing literature, particularly in the analysis of diverse com-
munication systems. Furthermore, the derivations are notably
straightforward and easy to comprehend, adding to their in-
herent simplicity.

V. NUMERICAL RESULTS

In this section, we corroborate our analytical expressions
through Monte-Carlo (MC) simulations.1

1The number of Monte-Carlo samples was set to 106. Also, we used a
maximum of 500 terms in (20).

In the upcoming, each figure shows the scale and spread
parameters corresponding to the double-Nakagami-m RVs in-
volved in the sum. To provide a clearer understanding of what
is illustrated in this section, please refer to the corresponding
curve for L = 5 in Fig. 1. In this case, the first five values
depicted in the figure (i.e., {mi}5i=1 and {Ωi}5i=1) are set to be
the parameters of the five double-Nakagami-m RVs involved
in the sum. Then using equations (8), (9), (10), and (11) the
parameters α, µ and r̂ are estimated. The aforementioned
steps are followed for every curve depicted in the following
figures. Table I presents the estimated parameters α, µ and r̂
for different values of L.

TABLE I
ESTIMATED PARAMETERS α, µ AND r̂ FOR DIFFERENT VALUES OF L.

L α µ r̂

5 0.9628 17.9058 12.6614
6 0.9616 24.0591 16.4435
7 0.9611 31.0539 20.6332
8 0.9610 38.8819 25.2289
9 0.9613 47.5354 30.2295
10 0.9628 56.8830 35.6345

Considering an arbitrary number of L and different dis-
tribution parameters mi and Ωi, Fig. 1 and Fig. 2 show
the approximated PDF and CDF of the sum of double-
Nakagami-m envelopes, respectively, with parameters α, µ
and r̂ estimated by the method of moments described in Sec-
tion III. The figures show an excellent agreement between the
proposed approximation and the simulations hence validating
our analytical approximations.

Fig. 3 illustrates the OP in terms of SNR varying the number
of branches L in the receiver and considering different coeffi-
cients for each cascaded Nakagami-m channel. As expected,
for any fixed value of SNR, the system’s availability improves
as L increases. Besides the perfect agreement between the
approximation and the simulation, the figure also exhibits the
asymptotic behavior, in a high SNR regime, of each curve.

Fig. 4 depicts the ASER considering a binary phase shift
keying (BPSK) modulation scheme (G=1), different L values,
and distinct distribution parameters for each double Nakagami-
m channel. The figure shows how the number of branches L
benefits the reliability of the system. In other words, for a
given value of SNR, the ASER diminishes as L increases.
The MC simulations and the asymptotic curves validate again
the proposed approximation.

Finally, it is worth noting that since we are approximating
R by the α-µ distribution, the diversity gain derived in (17)
and (21) solely depends upon the estimated parameters α
and µ. This was expected and further corroborated during
the execution of this numerical analysis since L is somehow
embedded in the estimated parameters. Thus as L increases,
α and µ increase as well.

VI. CONCLUSIONS

We have successfully derived precise closed-form approxi-
mations for the sum of double-Nakagami-m envelopes, yield-
ing accurate results. Specifically, we showed that the sum
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Fig. 1. PDF of R for multiple values of L and distribution parameters.














  










  









  










 








 







 

- Analytical, eq. (6)
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Fig. 2. CDF of R for multiple values of L and distribution parameters.

     


















   












  










  









 








 







- Analytical, eq. (16)
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-- Asymptotic, eq. (17)
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Fig. 3. OP versus SNR considering multiple values of L and γth = 0 dB.

statistics can be greatly approximated by a single α-µ RV.
Additionally, we have thoroughly examined the performance
of an EGC diversity receiver and introduced simplified yet ac-
curate formulations for key metrics, including OP and ASER.
Also, we derived asymptotic expressions for these performance
metrics. The tractability and simplicity of our results provide
researchers with a convenient framework for studying and
evaluating the performance of advanced technologies such as

  












  










 










 
































Analytical, eq. (20)

-- Asymptotic eq. (21)
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Fig. 4. ASER versus SNR with G = 1 and considering multiple values of
L.

NOMA and RIS. Lastly, our findings have been validated
through extensive Monte-Carlo simulations.
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