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Quantum Support Vector Regressor for Robust
Channel Estimation in OFDM Systems
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Abstract— Channel estimation in OFDM systems is generally
performed based on pilot symbols using least squares (LS).
However, in a practical environment where impulse noise may
be present, this method may not be effective. In this work we
propose the use of quantum kernel in support vector machine
(SVM) algorithm for robust channel estimation in OFDM systems
and compare its performance with the LS and the classic
support vector regressor (SVR). The viability of our approach
is substantiated by computational simulation results obtained in
frequency selective channel models with the presence of non-
Gaussian impulsive noise interfering in the pilot symbols.
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I. INTRODUCTION

Orthogonal Frequency Division Multiplexing (OFDM) has
become a popular scheme for wireless networking standards
that operate at a high bit rate [1]. The main advantage of
OFDM over single-carrier schemes is its ability to eliminate
intersymbol interference (ISI) without the need for complex
equalization filters at the receiver [1]. Channel estimation in
OFDM systems is usually performed based on pilot symbols
using least squares (LS) [2]. However, in a practical environ-
ment where impulse noise may be present, this method may
not be effective [3].

Support vector machines (SVM) have been proposed to
solve a variety of problems in digital communications systems
[4], including channel estimation [5]. However, when we
observe non-linearities in the system, it is necessary to choose
a kernel based on Mercer’s conditions [6] and adjust its
parameters to obtain an optimal regressor.

Quantum algorithms have been proposed to solve problems
with prohibitive complexity in classical algorithms [7], includ-
ing in communications systems [8], [9], [10]. In this work, we
propose the use of a quantum kernel for the SVM regressor
to channel estimation in an OFDM system with frequency
selective channel and impulsive noise presence.

This article is divided as follows: in section II, the OFDM
system and the noise model are described. The LS and SVR
estimator models are presented in section III. In section IV, the
quantum support vector regressor are presented. The results are
shown in section V, and conclusions are made in section VI.
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II. SIGNAL MODEL

The block diagram of the implemented OFDM system is
shown in Fig. 1. In this system, b are the bits to be transmitted,
s are the frequency domain data symbols, x are the time
domain data samples, y is the received signal in the time
domain, ŝ is the received signal in the frequency domain and
b̂ are the estimated bits.

Fig. 1. Block diagram of the implemented OFDM system.

The OFDM signal can be expressed in the time domain by
[1]

x[n] =

K−1∑
k=0

ske
j2π k

K n, (1)

where sk is the data symbol on the k-th subcarrier and K is
the number of subcarriers in the OFDM symbol.

The signal at the receiver can be written by

y[n] =

K−1∑
k=0

skHke
j2π k

K n + ωn + bngn, (2)

where y[n] are time-domain sample before DFT transfor-
mation, Hk is the channel’s frequency response at the kth
frequency, ωn is additive white Gaussian noise (AWGN), and
bngn is the impulse noise modeled as a Bernoulli–Gaussian
process, i.e., the product of a real Bernoulli process bn with
Pr(bn = 1) = p and a complex Gaussian process gn [11].

Then, residual noise at the receiver side is given by the sum
of both terms zn = ωn + bngn.

III. CHANNEL ESTIMATORS

The channel estimation can be done in the time domain or
in the frequency domain. In OFDM systems, pilot symbols
Sp are usually inserted between data symbols for channel
estimation purposes. Then, the channel’s frequency response
can be first estimated over a subset of subcarriers (pilot
positions), with cardinality κp, and then interpolated over the
remaining subcarriers. It is well known that if the channel
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impulse response has a maximum of L resolvable paths (and
hence of degrees of freedom), then κp must be at least equal
to L [12].

The estimators that will be used in the performance com-
parison in this work are:

A. LS

The least squares (LS) channel estimator obtains the esti-
mate of the frequency response of the channel at the position
of the pilot tones as [13]

Ĥ(k) =
ŝp(k)

sp(k)
, (3)

where ŝp(k) is the received signal on the kth subcarrier in
frequency domain and sp(k) is the pilot signal transmitted on
the kth subcarrier. After the estimation, a linear interpolation is
used to obtain the channel frequency response in all subcarrier
of the OFDM symbol.

B. SVR

The Support Vector Regressor (SVR) uses
{(x1, y1), ..., (xl, yl)} ⊂ X × R, where X is the input
space, as a training dataset, to find the function

f(x) = ⟨ω,x⟩+ b, (4)

that has at most ε deviation from the actually targets yi, and
at the same time is as flat as possible [14].

The OFDM system with the pilot tones can be viewed in
the time domain as

y[n] =
∑
k∈κp

sp(k)Hp(k)e
j2π k

K n+
∑
k/∈κp

s(k)H(k)ej2π
k
K n+zn,

(5)
and the signal model for OFDM-SVR is as follows:

y[n] =
∑
k∈κp

sp(k)Hp(k)e
j2π k

K n + en, (6)

where en =
∑

k/∈κp
s(k)H(k)ej2π

k
K n + zn contains the

residual noise plus the term due to data symbols. Here, these
unknown symbols carrying information will be considered as
noise during the training phases.

As the SVR was proposed to act on samples of real values
[14] and OFDM symbols have complex values, the proposed
SVR estimator will be divided into two estimators acting in
parallel, one on the real part of the OFDM symbol ℜ(y[n])
and the other on the imaginary part ℑ(y[n]).

Considering the slack variables ξi and ξ∗i , respectively, for
the positive and negative components in the real part, we arrive
at a formulation whose task boils down to minimizing

1

2
∥Hp(k)∥2 + C

l∑
i=1

(ξi + ξ∗i ), (7)

subject to

ℜ(y[n])−
∑
k∈κp

ℜ(sp(k)Hp(k)e
j2π k

K n) ≤ ε+ ξi; (8)

−ℜ(y[n]) +
∑
k∈κp

ℜ(sp(k)Hp(k)e
j2π k

K n) ≤ ε+ ξ∗i ; (9)

ξi, ξ
∗
i ≤ 0. (10)

In the imaginary part, a similar procedure is performed.
The positive constant C determines the trade-off between the
flatness of f and the amount up to which deviations larger
than ε are tolerated [14].

By making zero the primal-dual functional gradient with
respect to Hp(k), we get the Lagrange multipliers φn and φ∗

n

for the positive and negative components, respectively. The
expression for channel estimated real values at pilot positions
is:

ℜ(Ĥp(k)) =

K−1∑
n=1

(φn − φ∗
n)ℜ(sp(k)). (11)

After estimating the real and imaginary parts of Ĥp(k), we
join the values to obtain the complex estimation of Ĥp(k).

Until here, the equations were formulated for a linear
scenario. The interesting in this method is that exist a strategy
that transforms a non-linear problem into a linear problem
[14]. This strategy is called "kernel trick".

Give a map function ϕ : X → F , is possible rewrite non-
linear regression problem as a linear regression problem in
feature space F .

The kernel is defined as

k(x, x′) = ⟨ϕ(x), ϕ(x′)⟩. (12)

IV. QUANTUM SUPPORT VECTOR REGRESSOR

A. Basics of quantum computing

Quantum computing is a model of computation that exploits
quantum mechanical phenomena by harnesses the power of
atomic and subatomic particles to perform high speed parallel
computing [15]. Classical information in digital computers is
represented by logical binary digits (bits). A logical bit can
take the value of 1 or 0 depending on whether the voltage
in the wire is High or Low in a logic circuit. In contrast,
the smallest unit of information stored in a two-state quantum
computer, called a quantum bit or qubit, is a unit vector in
the two-dimensional complex Hilbert space (C2) for which a
particular orthogonal basis {|0⟩ , |1⟩} has been fixed.

The quantum state of a qubit can be represented using any
chosen orthogonal basis. The most commonly used basis is
the computational basis, which corresponds to |0⟩ = [1, 0]T

and |1⟩ = [0, 1]T . Unlike the classical bit, a qubit can be in a
linear superposition of |0⟩ and |1⟩,

|ψ⟩ = α |0⟩+ β |1⟩ = [α, β]T , (13)

where α, β ∈ C are the amplitudes of |ψ⟩ on the computational
basis with the constraint |α|2 + |β|2 = 1. When α = 1, then
β = 0 and hence |ψ⟩ = |0⟩, which corresponds to the classical
bit value 0. Similarly, if α = 0, then β = 1 and |ψ⟩ = |1⟩,
which corresponds to the classical bit value 1. In general,
when a state of one qubit |ψ⟩ is measured with respect to the
computational basis, the probability that the measured value
is |0⟩ is |α|2 and the probability that the measured value is
|1⟩ is |β|2.
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The state of a quantum computer can be changed by
applying unitary operators or quantum gates to its qubits [15].
One of the most widely used single-qubit unitary operator is
the Hadamard gate, given by

H =
1√
2

[
1 1
1 −1

]
. (14)

One can easily check that H |0⟩ = |0⟩+|1⟩√
2

and H |1⟩ =
|0⟩−|1⟩√

2
. If the input is |0⟩, the Hadamard gate creates a

superposition of states with equal weights.
Another important set of single-qubit gates is the Pauli

matrices,

X =

[
0 1
1 0

]
, Y =

[
0 −i
i 0

]
, Z =

[
1 0
0 −1

]
. (15)

The gate X is the quantum NOT gate because X |ψ⟩ = β |0⟩+
α |1⟩. The Z operator is the gate imposing a phase shift by π
radians, since it flips the sign of the amplitude of the state |1⟩,
Z |ψ⟩ = α |0⟩ − β |1⟩. The operator Y can be considered as a
combination of X and Z gates, because Y |ψ⟩ = i(−β |0⟩ +
α |1⟩).

In order to increase the complexity of a quantum system, a
most general 1-qubit gate can be used:

U(θ, ϕ, λ) =

[
cos( θ2 ) −eiλ sin( θ2 )

eiλ sin( θ2 ) ei(λ+ϕ) cos( θ2 )

]
. (16)

For instances, three useful gates obtained from U are

U(θ,
π

2
,−π

2
) = Rx(θ) =

[
cos( θ2 ) −i sin( θ2 )

−i sin( θ2 ) cos( θ2 )

]
, (17)

U(θ, 0, 0) = Ry(θ) =

[
cos( θ2 ) − sin( θ2 )
sin( θ2 ) cos( θ2 )

]
, (18)

U(0, 0, λ) = e
iλ
2 Rz(λ) =

[
1 0
0 eiλ

]
, (19)

where Rx, Ry and Rz are the operators that rotate the Bloch
sphere about the x, y, and z-axis, respectively. Fig. 2 shows a
Bloch sphere.

Fig. 2. Bloch sphere.

To dealing with multiple qubits is necessary to introduce the
concept of tensor product. Let V and W be complex vectors
space of dimensions m and n, respectively. The tensor product
V ⊗W is an mn-dimensional vector space.

For example, if we have a 2-qubit quantum computer and
the first qubit is in the state |0⟩ and the second is in the
state |1⟩, then the quantum computer is in the state |0⟩ ⊗
|1⟩ = |01⟩ = [0, 1, 0, 0]T . The resulting vector is a four-
dimensional vector space. The general state |ψ⟩ of a 2-qubit
is a superposition |ψ⟩ = α |00⟩+β |01⟩+γ |10⟩+δ |11⟩, with
the constraint |α|2 + |β|2 + |γ|2 + |δ|2 = 1.

In general, the quantum state |ψ⟩ of an n-qubit is a superpo-
sition of 2n states |0⟩ , |1⟩ , . . . , |2n − 1⟩ (computational basis
in decimal notation),

|ψ⟩ =
2n−1∑
i=0

αi |i⟩ , (20)

with the amplitudes αi constrained to
∑2n−1

i=0 |αi|2 = 1.
Applying the Hadamard gate to the n-qubit state |0⟩ we

obtain

H⊗n |0⟩ =
(
|0⟩+ |1⟩√

2

)⊗n

=
1√
2n

2n−1∑
i=0

|i⟩ . (21)

The tensor product decribed in Eq. (21) produces an equally
weighted superposition of all computational basis states, when
the input is the state |0⟩. This state is useful for applying
quantum parallelism. Quantum parallelism is one of the most
important features of quantum computers that promise to solve
problems that are to hard for classical computers to solve in
reasonable amount of time.

To conclude this discussion of basics of quantum comput-
ing, let us consider the most important operation on 2-qubit
system, the controlled-NOT or CNOT gate. It has two input
qubits, the control and the target qubit, respectively. The target
qubit is flipped only if the control qubit is set to 1, that is,
|a, b⟩ → |a, a⊕ b⟩, where ⊕ is addition modulo 2.

|1⟩ |0⟩

|1⟩ • |1⟩
Fig. 3. CNOT gate with the second qubit as the control and the first qubit
as the target.

B. Quantum kernels

For using the quantum computing and all their advantages is
needed encoding the classical data x into a quantum state |ψ⟩
[16]. In quantum computing universe, the quantum state |ψ⟩,
that describes completely the qubit, lives in Hilbert space H
and this allows a very natural definition of a quantum kernel
[16]. The classical data x is mapped in quantum state |ψ⟩
through the map function ϕ : X → H. Then, the quantum
kernel is defined as

k(x,x′) = |⟨ϕ(x)|ϕ(x′)⟩|2, (22)

where |ϕ(x)⟩ = Uϕ(x)|0⟩ and the circuit Uϕ(x) encodes the
classical data x in quantum state |ϕ(x)⟩, for some unitary
operator U . The state ⟨ϕ(x)| is the dual vector of |ϕ(x)⟩,
obtained by transposing |ϕ(x)⟩ and conjugating each entry,
in notation ⟨ϕ(x)| = |ϕ(x)⟩†.
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The kernel defined in Eq. (22) can be efficiently estimated
by a quantum computer using the well known SWAP Test [17].
The SWAP Test is a procedure commonly used in quantum
machine learning to compare two quantum states by applying
Hadamard gate in the first qubit and CNOT gates to each qubit,
see Fig. 4.

Fig. 4. Circuit implementing the swap test between two states |ϕ⟩ and |ψ⟩.

In this article we present a 5-qubit quantum support vector
regressor (QSVR) for channel estimation in OFDM system.
The main idea uses a quantum function to load classical data
represented by pilot symbols into quantum states. The quantum
feature map of depth d used in this work is defined by the
unitary operator [18]

UΦ(x) =
∏
d

UΦ(x)H
⊗n, (23)

where

UΦ(x) = exp

i ∑
S⊆[n]

ϕS(x)
∏
k∈S

Zk

 . (24)

The number n of qubits is equal to the dimensionality of
the classical data x, which in our case corresponds to the
number of pilot tones used in OFDM system proposed. The
symbols are encoded through the coefficients ϕS(x), where
S ⊆ [n] = {1, . . . , n} describes all possible connections of
qubits in the quantum circuit [18]. The encoding function is
given by

ϕS : x 7→

{
xi if S = {i}
(π − xi)(π − xj) if S = {i, j} (25)

and Zk is the Z Pauli matrix acting on the k-th qubit.
For example, a quantum circuit that implements UΦ(x)

using a single-qubit Z rotation, two-qubit ZZ rotation and
interactions between all qubit pairs will produce blocks of the
form

Fig. 5. Quantum circuit of UΦ(x) with n = 2 qubits, depth d = 1 and Pauli
rotation P = RZ .

The Fig. 6 depicts a general circuit diagram for UΦ(x) with
layers of Hadamard gates interleaved with entangling blocks
encoding the classical data.

The difference between SVR and QSVR is the origin of the
kernel. If kernel is calculated using quantum algorithms, that

Fig. 6. Quantum circuit of UΦ(x) with depth d = 2 and layers of Hadamard
gates.

is, it’s a quantum kernel then it’s about QSVR. On the other
hand, it’s about SVR.

V. RESULTS

To validate the proposed quantum kernel for the SVR and
compare its performance with the classic SVR and the LS in
channel estimation in OFDM systems, bit error rate (BER)
curves were created, considering the following simulation
parameters:

TABLE I
SIMULATION PARAMETERS

number of subcarriers [K] 16
subcarrier modulation 16-QAM
cyclic prefix length in number of subcarriers 4
number of pilot subcarriers [Sp] 5

The tests were performed on a frequency selective channel
with a delay profile given by h = [1 0 0.3+0.3j], and impulse
noise distortion modeled with a Bernoulli–Gaussian process
with p = 0.05. The impulse power in impulsive noise is fixed
at 20 dB greater than the signal variance at the receiver input.

We consider a packet-based transmission, where each packet
consists of a header at the beginning of the packet with a
known training sequence or preamble to carry out channel
estimation, followed by the OFDM data symbols. At the
preamble, there are one OFDM symbol with pilot subcarriers.
After the estimation (with either QSVR, SVR or LS) of
channel coefficients at pilot positions Ĥp(k), we use them to
compute the interpolation of the channel. Next, we perform
zero forcing (ZF) equalization [19] using the interpolated
channel. Detection is carried out with a hard-decision slicer
over the equalized data. For each estimator, 100 packets were
transmitted to calculate the average and raising the BER.

We studied the performance variation in the system due to
changes in the kernel and free parameters of the SVR. We
tested the linear, radial and polynomial kernels and varied the
C parameter from 1 to 1000. The optimal parameter found
for C was C = 100, and RBF kernel. Fig. 7 shows the BER
performance as a function of the signal-to-noise ratio (Eb/N0).

We also utilized the Qiskit library (an open-source quantum
computing framework created by IBM®) [20] for the quantum
machine learning task and a local quantum simulator. The
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Fig. 7. BER performance comparison.

classical kernel-based method for SVR was run on a classical
computer with a regular CPU.

Analyzing the performance of the BER obtained from the
three tested estimators, we can observe in the Fig. 7 that
the BER curve obtained with the LS estimator decays very
slowly up to 17.5 dB of SNR and presents a plateau from
this value onwards, which shows its sensitivity to impulsive
noise, while the curves obtained with the SVR and QSVR
estimators show similar behavior and robustness to impulsive
noise, with a slightly better performance for the QSVR, which
can be explained by a better suitability of the quantum kernel
for linearization of the input space data.

VI. CONCLUSIONS

In this work, an SVR algorithm with a quantum kernel for
channel estimation in OFDM systems was proposed. There-
fore, the structure of the adopted OFDM system, the channel
estimation process in the time domain, by the SVR, and the
frequency domain, by the LS, in addition to the fundamentals
of quantum computing for generating the quantum kernel
were described. Several tests were carried out in search of
the optimal parameters of the SVR and the OFDM system.
The simulations confirmed the robustness of the QSVR in
the presence of impulse noise interfering with the pilot sym-
bols and the results show that the proposal outperforms the
classic SVR and the LS. Following this work, we intend to
investigate the performance of QSVR in channel estimation
and data detection in massive multiple-input, multiple-output
OFDM systems (MIMO-OFDM), with multiple users and low
resolution digital-to-analog converters (ADCs).
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