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Application of a Channelized Energy Detector for
Digital Wideband ESM Receivers
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Abstract— It is not an easy job to select and adjust a
general-purpose detector for digital wideband Electronic Support
Measures (ESM) receivers. Optimal detectors and parameters’
adjustment depend on many variables, e.g., the receiver
characteristics, application and system’s constraints. In this
paper, we study the performance of a FFT-based channelized
energy-based detector (CED) for ESM receivers, in which time
integration is based on logic-OR and binary integration. We
show that, for the studied Electronic Warfare scenario, the CED
outperforms other detectors: total energy, GLRT and ambiguity
function-based detectors. This investigation points the CED as
an interesting option for ESM receivers.

Keywords— Electronic Support Measures (ESM), Electronic
Warfare (EW), Digital Receiver, energy detection, channelized
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I. INTRODUCTION

Within the field of Electronic Warfare (EW), the Electronic
Support Measures (ESM) division holds the task of
passively intercepting, identifying, and locating sources of
hostile radiations [1]. ESM receivers passively exploit the
electromagnetic emissions within a very large bandwidth,
without any a priori knowledge, to provide information for
tactical picture compilation in the battle theater.

This study assumes a Wideband Digital Receiver ESM
architecture which employs a tunable Superheterodyne
receiver, with a large instantaneous bandwidth, followed by
a high-speed analog-to-digital converter (ADC), which is able
to sample the in-phase and quadrature (I and Q) channels. The
digitized samples enter the signal processing block, where the
detection algorithms take place. These conditions enable the
collection of many samples of the same signal, allowing the
detection to take place not only in time, but also in frequency
domain, which may improve detection performance [2].

The optimal detector for pulses with unknown phase, carrier
frequency, amplitude and time of arrival is the Generalized
Likelihood Ratio Test (GLRT) [3], which ends up testing
the spectrogram values. In [4], the authors have added a
binary integration detection strategy to the spectrogram values
along the time axis which improved the robustness against
spurious signals, but is not adequate for the detection of
Linear Frequency Modulated (LFM) signals. In [5], the authors
proposed a detector based on the Ambiguity Function, which
is linked to the Cross Wigner-Ville distribution [6] in a causal
form [7], therefore, suitable for detecting LFM signals.

In this paper, we propose a channelized energy-based
detector, with a detection strategy based in logic-OR and
binary integration (CED), where channelization is achieved by
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a Fast Fourier Transform (FFT) pre-processor and compare
it with other detectors: total energy (TED), GLRT, and the
ambiguity-based detector of [5]. Computer simulations shows
that with an adequate choice of parameters, the CED has
superior detection performance, even for LFM signals.

This paper is organized as follows: the system model is
described in Section II; the CED is explained in Section III,
a review of the other detection methods is in Section IV.
Computer simulations are presented in Section V and, finally,
conclusions are given in section VI.

II. SYSTEM MODEL

Consider a radar signal, s(t), with a carrier frequency, fc,

s(t) = Ag(t) cos(2πfct+ ϕ(t) + ψ), (1)

where A is the signal amplitude in Volts, g(t) is a gate function
with width τ (starting at the origin) and unitary amplitude, ϕ(t)
is the intrapulse modulation function and ψ is the initial phase.
The received signal within a data processing frame (DPF) of
duration TDPF is r(t),

r(t) = s(t− T ) + n(t), 0 ≤ t ≤ TDPF, (2)

where n(t) is an AWGN process with variance σ2
n and T

is the Time of Arrival (TOA). The received signal, r(t), is
downconverted to an intermediary frequency fI and digitized
with a Nyquist-compliant sampling frequency, fs, where its
in-phase (I) and quadrature (Q) samples form the complex
received pulse sequence, r[n],

r[n] = r(nts), (3)

where ts is the sampling period, ts = 1/fs.

A. Binary Detection Problem

The binary signal detection problem is a hypothesis testing
problem, whose goal is to decide between the null hypothesis,
H0 (noise only case) and the alternative hypothesis, H1

(presence of the signal of interest). Using a digital receiver, the
decision can be made upon a sequence of N complex samples
from (3) stacked as a column vector, r ∈ CN×1:

H0 : r = n,

H1 : r = s+ n.

Detection is based on some function T (·) of the received
vector, the decision variable, which is compared to a threshold,
η. If T (r) exceeds the threshold, then hypothesis H1 is chosen.
Different functions T (·) imply in different detectors.
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III. CHANNELIZED ENERGY DETECTOR

The object of this study is the FFT-based channelized energy
detector (CED) which can work with time integration. The
detection strategy for the time integration employs logical-OR
and binary integration. Loosely speaking, the CED is a
detection scheme employed in receivers with filter bank
arrays, in which the output of several parallel narrowband
reception filters are combined to result in a final decision.
An integration interval, TR, which is a fraction of the total
observation interval, may also be applied, which allows many
different decision strategies to combine the output of the
individual receivers [8]. The channelized receiver can be
similarly implemented with Fast Fourier Transform (FFT)
front-end preprocessor, by summing some adjacent time and/or
frequency spectrogram bins [9], [10].

Fig. 1 illustrates the idea of a channelized energy detector
implemented with FFTs, which can be viewed as a partition
of the spectrogram. Each big rectangle corresponds to a
time-frequency cell of the channelized receiver. The decision
variable, Vi,j , of each individual time-frequency cell is the sum
of the spectrogram values inside the partitioned region Si,j ,
correspondent to the i-th channel and j-th interval,

Vi,j =
1

σ2
n

∑
(m,l)∈Si,j

|Inl
(fm)|2, (4)

where Inl
(fm), are the entries of the spectrogram matrix,

Inl
(fm) =

1√
NFFT

NFFT−1∑
k=0

r((l−1)NFFT+k)exp
{
−j2πkm
NFFT

}
,

(5)
NFFT is the number of FFT points, fm is the m-th FFT
frequency bin fm = mfs/NFFT and nl corresponds to the
l-th time interval, [(l − 1)NFFTts, lNFFTts].

The real and imaginary parts of Inl
(fm), are jointly

Gaussian independent variables with variance σ2
n; under

hypothesis H0, the mean of both real and imaginary parts
is zero. Under hypothesis H1, the mean of the real and
imaginary parts of Inl

(fm) depends on the type of signal
present during the observation interval. The best case scenario,
in terms of energy concentration in the spectrogram cell, is
the presence of an unmodulated signal with carrier frequency
fc = fm occupying the complete nl interval. In this case,
the expected value of the magnitude squared of Inl

(fm) is
E
[
|Inl

(fm)|2
]
= NFFTA

2, where A is the pulse amplitude.
Assuming the distributions of [11], the decision variable

Vi,j , under the noise-only case, p(vi,j |H0), follows the
chi-squared distribution, χ2

ν(v), where ν = 2M is the
number of the chi-squared degrees of freedom and M is the
number of summands in (4). Dropping the indexes, since
under the noise-only case, Vi,j are independent and identically
distributed, p(v|H0), is given by χ2

ν(v),

χ2
ν(v) =

v
ν−2
4 e−

v
2

(2)
ν
2 Γ(ν/2)

, (6)

where Γ(·) is the gamma function. The probability of false
alarm of a time-frequency cell, Q, is the probability of the

Fig. 1: Representation of a channelized receiver using a STFT.

Fig. 2: Diagram of the detection strategy: binary integration
over the logic-OR column’s outputs.

decision variable, Vi,j , being above a threshold η for the
noise-only case, that is

Q = Fχ2(η; 2M), (7)

where Fχ2(x; ν) is the chi-squared cumulative distribution
function.

Although the optimum detection strategy for combining the
output of the receiver’s channels and integration intervals is
the Average Likelihood Ratio (ALR) detector [12], [13], or
equivalently, for this case, the Woodring-Edell (WE) detector
[14], we adopt a suboptimal method based on logical-OR and
binary integration which is more easily analysed, implemented
and is not SNR dependent as the optimal detector. The
detection strategy adopted in this study is described in [15]
under the name OR/BMWD (logical-OR and Binary Moving
Window Detector) which performs similarly as the ALR
detector [16].

The performance comparison of the methods in this paper
is made in a block detection scheme, therefore, the detection
strategy of [15] is explained here for a fixed time window of
duration TDPF. In Fig. 1 there are NC frequency channels, and
b integrations intervals, b = TDPF/TR, thus, the total number of
time-frequency cells is Ntotal = NCb. Each cell is tested with
the threshold η, which implies in a certain cell probability of
false alarm, Q, (whose computations are explained later on).
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Fig. 2 illustrates the detection strategy: a) a hard decision
is made for each Vi,j ; b) a logical-OR is implemented
column-wise; c) if at least K columns are “positive” for
detection, then the decision over the block in test is for
hypothesis H1, presence of pulse.

The probability of false alarm of a column, p0, is the
probability of at least one of the Nc cells of the column being
above the threshold in a noise-only scenario,

p0 = 1− (1−Q)NC . (8)

The final probability of false alarm, Pf can be computed as

Pf =

N∑
k=K

(
N
k

)
pk0(1− p0)

N−k. (9)

Given the system probability of false alarm, Pf , one can
compute p0 iteratively [17]. After computing p0, one can
compute the cell probability of false alarm, Q using (8) and
the threshold, η, as the inverse of (7).

IV. REVIEW OF THE OTHER DETECTORS

In this section, we present the detectors implemented in this
paper for comparison purpose.

A. Ambiguity-based Detector

This subsection briefly explains the detector proposed in
[5]. This detector is inspired by the Ambiguity Function,
AF (nT , f), defined in [5] as

AF (nT , f) =

NI−1∑
k=0

x[k + nT ]x
∗[k]e−i2πf k

fs , (10)

where nT is the delay, f is the frequency, NI = N − nT
and N is the length of the complex waveform sequence x[k].
The idea of this detector is illustrated in Figs. 3 and 4. Fig.
3 depicts the magnitude of the Ambiguity Function (AF) of
an unmodulated pulse (left) and a chirp (right) with a slope
α of 67 MHz/µs, both with 1 µs duration. As expected, the
AF of the unmodulated pulse looks like a straight line and
the chirp AF is tilted with an inclination corresponding to the
chirp slope.

If one cuts the AF at a certain delay, say τc, then the plot of
this view depicts the magnitude as function of the frequency,
f . Fig. 4 depicts the AFs’ cut for a 0.1 µs delay, τc = 0.1 µs.
We can observe a peak at frequency zero for the unmodulated
pulse (left) and a peak at frequency, fp, far from zero, for the
chirp (right), where fp is proportional to the chirp slope, α,
fp = ατc. Note the same magnitude for both peaks, that is
because this detector does not “spread” the chirp energy, as
it happens with FFT-based detectors when it comes down to
detecting chirps.

The probability density function of the decision variable
given by D = |AF (nT , f)|/NI , AF (nT , f) defined in (10)
under the noise-only case, p(d|H0), is given by [18]

p(d|H0) =
4NNI+1

I dNI

Γ(NI)σ
2NI+2
n

I0 (0)KNI−1

(
2NId

σ2
n

)
, (11)

Fig. 3: Example of the Contour of the AF for a pulse
(left) and a chirp (right) without noise.

Fig. 4: View of a cut at 0.1 µs of the AFs in 3.

where I0(·) and Kν(·) are modified Bessel functions. The
probability of false alarm, Q, for a given frequency, f = fm,
is

Q = Pr{d > η|H0} =

∫ ∞

d=η

p(d|H0)dd. (12)

A false alarm occurs if the decision variable
|AF (nT , fm)|/NI of any one of the computed frequencies,
fm, m = 1, . . . , NF , for a fixed delay, nT , is above the
threshold. The total probability of false alarm, Pf , is given
by

Pf = 1− (1−Q)NF . (13)

Given the system probability of false alarm, Pf , one can
compute Q from (13) and η can be found by numerical
integration of (11), there are computational difficulties for
large values of NI though. Thus, we established the threshold
through Monte Carlo simulations in this paper.

B. Total Energy Detector

The decision variable of the total energy detector (TED) in
this paper is

V =
1

σ2
n

N−1∑
k=0

|r[k]|2, (14)

where r[k] is the k-th component of the digitized received
vector r ∈ CN×1. Assuming the distributions of [11],
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the decision variable V under the noise-only case, p(v|H0)
follows the chi-squared distribution, χ2

ν(v), described in (6),
where ν = 2N . Given a total system probability of false alarm,
Pf , the threshold of the total energy detector, η, is given by
the inverse of the chi-squared cumulative distribution function,
Fχ2(x; ν), as

η = F−1
χ2 (1− Pf ; 2N). (15)

C. GLRT Detector

The Generalized Likelihood Ratio Test (GLRT) for
detecting sinusoidal pulses with unknown parameters
corrupted by AWG noise resumes to the comparison of the
short-time Fourier Transform (STFT) or spectrogram [3] to a
threshold, η. The GLRT detector decides for hypothesis H1

(presence of pulse) if

max
nl,fm

|Inl
(fm)| > η, (16)

where Inl
(fm) are the entries of the spectrogram matrix,

described in (5), which are Rayleigh distributed in the
noise-only case. If one searches among Ntotal entries, (nl, fm)
pairs, than the threshold, η, which results in a total probability
of false alarm, Pf , is directly given by

η =

√
−σ2

n ln
(
1− Ntotal

√
1− Pf

)
. (17)

where ln(·) is the natural logarithm.

D. Genie-aided Matched Filter Detector

The genie detector is a matched filter with perfect
knowledge of the received signal (obtained from a genie). The
decision variable, V , is

V =
|y[N ]|√
N

, (18)

where y[N ] is y[k] for k = N and y[k] = r[k] ∗ fM [k],
where fM [k] is the filter matched to the received signal,
s[k], fM [k] = s∗[−k], and N is the length of the signal
sequence s[k]. In the noise-only case, the decision variable,
V , is Rayleigh distributed, thus for a total probability of false
alarm, Pf , the threshold η is directly given by

η =
√

−2σ2
nln(Pf ). (19)

where ln(·) is the natural logarithm.

V. SIMULATION

We compare the performance of four detectors: the
Ambiguity-based detector (Amb. Met.), explained in
Subsection IV-A, the TED, explained in IV-B, the GLRT,
explained in IV-C, and, finally, the CED, which is the object
of this study and is detailed explained in Section III. The
Genie MF, explained in IV-D, is plotted as an upper bound.

The proposed simulation considers a data processing frame
(DPF) of 1 µs, TDPF = 1 µs and the SNR is defined as A2/2σ2

n.
In order to verify the performance of the detectors, we simulate
with MATLAB different illustrative scenarios in the context of

Fig. 5: Pd vs. SNR curves for chirp with a slope of α = 10
MHz/µs and a larger slope of α = 67 MHz/µs, described in
the legend with (H).

EW: chirps with different slopes, unmodulated and Barker-13
pulses.

The parameters of the CED were empirically optimized for
NFFT=64, TDPF = 1 µs and fs = 1 GHz. The CED architecture
which results in best performance is, actually, without the time
axis division, TR = TDPF. This is an interesting fact and further
investigations can be done in this sense, maybe for longer
DPFs the results are different. The number of frequency bins
added together in order to form the time-frequency cell is
three, resulting in a frequency bandwidth of WR = 3fs/NFFT.

For the Ambiguity-based Detector, we limited the search
scope to the frequencies associated to a slope range of |α| ≤
100 MHz/µs and defined a delay of 0.1 µs. The number of
summands for the TED is equal to NI in the Ambiguity-based
Detector. The number of FFT points NFFT for the GLRT and
for the CED are the same and equal to 64.

The threshold of all detectors are established for a false
alarm rate of Rf = 0.01µs−1, which implies in a false alarm
probability of Pf = 0.01 per DPF. The false alarm is large to
facilitate simulations.

Fig. 5 depicts the curves of probability of detection (Pd) vs.
SNR for chirps with slopes of 10 and 67 MHz/µs respectively.
One can see that the CED performs much better than the other
detectors. It is interesting to note that the CED performs better
for slope 10 MHz/µs than for 67 MHz/µs. That is because, for
larger slopes, the chirp energy is more spread in frequency,
as illustrated in Figs. 6 and 7, which depict the 0 dB SNR
spectrogram of the chirps with slopes 10 and 67 MHz/µs
respectively. Fig. 8 shows the Pd vs. SNR for different slopes
(an unmodulated pulse corresponds to α = 0 MHz/µs), one
can note the gain in detection for reducing the slope.

Fig. 9 depict the Pd. vs. SNR for an unmodulated pulse
occupying the entire DPF. The CED still has superior
performance than the other detectors. As expected, the Amb.
Met. performs identically for the unmodulated pulse of Fig.
9 and for the chirps with different slopes of Fig. 5, since, as
illustrated in Fig. 4, the energy of both types of signals is
concentrated, just in different frequencies.

Fig. 10 depicts the Pd. vs. SNR for a complete Barker 13
code within the DPF interval. The CED outperforms the other
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Fig. 6: α = 10 MHz/µs. SNR = 0 dB. Fig. 7: α = 67 MHz/µs. SNR = 0 dB. Fig. 8: CED Pd vs. SNR for different α.

Fig. 9: Pd vs. SNR for unmod. pulse. Fig. 10: Pd vs. SNR for Barker 13. Fig. 11: Barker 13 AF and cut at 0.1 µs.

detectors and the Amb. Met. performs poorly. That is because
the cut at the chosen delay is not adequate for the Ambiguity
Function of the barker 13 as shown in Fig. 11.

VI. CONCLUSIONS

This paper studies a FFT-based Channelized Energy
Detector with detection strategy based on logic-OR and binary
integration (CED) for EW scenarios which is computationally
simple and FPGA friendly. Simulations show that with an
adequate choice of parameters, it considerably outperforms
other detectors: a total energy detector, a GLRT detector and
an Ambiguity-based detector [5]. This initial investigation
points the CED as an interesting choice for a general
purpose detector for ESM receivers in the context of EW. An
EW-oriented methodology for the parameters’ selection is left
for future work, figures of merit in [15] could be a start point.
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