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INS/GNSS/Fiducial Marker Sensor Fusion for UAM
Aircraft Navigation

Fábio Okina, Marcos R. O. A. Maximo, Marcelo Bruno and Daniel Viotti

Abstract— This paper addresses the sensor fusion of INS,
GNSS, and Fiducial Markers for navigation in the Urban Air
Mobility environment. The Error-State Kalman filter (ESKF)
was adopted for the estimation of position, velocity, attitude, and
biases, considering ideal and non-linear GNSS sensors in their
tightly and loosely coupled forms. The main contribution of this
work is the ESKF formulation for INS/GNSS/Fiducial Marker
sensor fusion and validation with synthetic image simulation
in the Unreal Engine integrated with Simulink. The Fiducial
Marker fusion shows improvements in filter accuracy and cor-
rects the filter when GNSS is not available.

Keywords— Sensor Fusion, INS, GNSS, Fiducial Marker

I. INTRODUCTION

Urban Air Mobility (UAM) aims to provide intra-urban
transportation at a low cost. UAM vehicles will fly at low
altitudes sharing airspace with other aircraft and may have
pilots or be autonomously piloted [1].

Reliable and secure navigation is crucial for UAM vehicles
and is challenging due to their operating conditions of low
altitude and congested airspace [2].

The aircraft requirements and regulations for urban air
mobility are topics of current research [4], [3]. Regarding
navigation performance, the requirements point towards high
precision and robust systems, leveraging information from on-
board and ground sensors. To achieve the required navigation
performance, sensor fusion techniques are suitable candidates
for multi-sensor navigation systems.

INS/GNSS sensor fusion is one of the main approaches for
improving navigation performance. The short-term accuracy
and high frequency of the inertial sensors complement the
global coverage and superior long-term error performance of
the GNSS. By fusing these data one can improve the accuracy,
availability, and robustness of the navigation [5], [6], [7].

Several filtering techniques have been developed for navi-
gation sensor fusion. The classical approach is the Extended
Kalman Filter (EKF) which provides a computationally ef-
ficient method for state estimation and has been subject to
extensive research and application [8], [9].

Other approaches for INS/GNSS fusion are the Kalman
Filter variations which do not depend on linearization such
as the Sigma Point Kalman filter [10], [11] and the Unscented
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Kalman Filter [9]. Particle filters are also an option for
navigation sensor fusion [12].

The Error State (or Indirect) Kalman Filter (ESKF) [13]
is an EKF variation which, instead of estimating the full
state of the system, estimates only the errors. This approach
has the advantage that the error states are better represented
by linear dynamics than the full state. Furthermore, it also
provides robustness in case of sensor failures, since INS
integration is independent of correction sensors measurements.
Comparative analysis shows that ESKF has better robustness
to the imperfect tuning of the sensor noise covariance [14],
[15] than the EKF.

In this paper, in addition to INS/GNSS we fuse fiducial
markers for navigation aiding. Fiducial Markers such as April
Tag [16], ArUco [17], ARToolKit [18], and ARTag [19] are
features designed for automatic detection with monocular cam-
eras, which can be applied for pose estimation and tracking
[20], [21].

The main contributions of this work are as follows. The
INS/GNSS/Fiducial Marker multi-sensor fusion solution for
aircraft navigation with the ESKF, for estimation of position,
velocity, attitude, and sensor biases. The validation of the
filter in simulation with synthetic images in the Unreal Engine
integrated with the Simulink environment. In this architecture
the INS/GNSS fusion can provide accurate estimations and
the Fiducial Marker can increase accuracy aiding the GNSS
when in the field of view of the camera.

This paper is organized as follows. In Sec. II the equations
of the Error State Kalman Filter are presented, in Sec. III
the ESKF is formulated for navigation, in Sec. IV the update
sensors are modelled, in Sec. V the simulation results and filter
validation are shown. Finally in VI this paper is concluded.

II. THE ERROR STATE KALMAN FILTER

The Error State Kalman Filter is an EKF variation in which,
instead of estimating the true states xk,t of the system, it
follows an indirect approach where the nominal states xk

are integrated separately and only the error states δxk are
estimated by the filter. The relationship between true, nominal,
and error states is

xk,t = xk + δxk. (1)

The system nominal states are integrated by

xk =

∫ k∆t

0

f(x(t),u(t))dt. (2)

where f(·) is a non linear function of the states x and
inputs u. The prediction step estimates the error states δx
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and its covariance matrix P , with Jacobians of the error states
evaluated at the nominal state

δ̂xk|k−1 = Fx(xk,uk)δ̂xk−1|k−1, (3a)

Pk|k−1 = FxPk−1|k−1F
T
x + FiQiF

T
i . (3b)

where Fx is the Jacobian of f and Qi is the covariance matrix
of the perturbations. The update step corrects the error states
when sensor measurements zk are available:

Kk = Pk|k−1H
T
k (HkPk|k−1H

T
k + V )−1,

δ̂x
−
k|k = Kk(zk − h(xk + δ̂xk|k−1)),

Pk|k = (I −KkHk)Pk|k−1,

(4)

where h(·) is the observation function of the sensor, H is
its the Jacobian and I is the identity matrix. In the ESKF,
following the update step, the corrected error state, δ̂x

−
k|k is

injected into the nominal state, and the error state estimate
δ̂xk|k is reset to zero:

xk+1 = xk ⊕ δ̂x
−
k|k,

δ̂xk|k = [0].
(5)

where ⊕ denotes the composition operation. Due to this step,
the error state estimate δ̂xk−1|k−1 in the prediction step is
always zero, and Eq. (3a) does not need to be computed [14].

III. ESKF FORMULATION FOR NAVIGATION

To formulate the ESKF for navigation, we use the approach
adopted by Sola [22], representing attitudes with unit Hamilton
quaternions. We also use the local tangent plane North-East-
Down (NED) fixed to the Earth since we focus on local
navigation for Urban Air Mobility. For the prediction step
and nominal state integration, we use a kinematic model to be
vehicle-independent, and stochastic models for the INS sensor
and GNSS bias.

A. INS model
From the inertial navigation system, we use acceleration

and angular velocities as inputs to the kinematic model. Their
dynamics are modeled with Gaussian and Brownian noises, as
follows:

am = RT
t (at − gt) + ab + an,

ȧb = aw.
(6)

ωm = ωbody + ωb + ωn,
ω̇b = ωw

(7)

where am is the measured acceleration, Rt is the true attitude
matrix, at is the true acceleration in NED, gt is gravity
in NED, ab accelerometer bias, an ∼ N (0, σ2

an
), aw ∼

N (0, σ2
aw

), ωm is the measured angular velocity, ωbody is
the true angular velocity in the body frame, ωb is the angular
velocity bias, ωn ∼ N (0, σ2

ωn
), and ωw ∼ N (0, σ2

ωw
).

B. GNSS bias model
The GNSS receiver clock bias is modeled as a second-order

system
ḃ = d+ vb
ḋ = vd

(8)

where b is the receiver clock bias, d is the clock drift, vb ∼
N (0, σ2

vb
), and vd ∼ N (0, σ2

vd
)

C. Nominal State and Prediction Step

The nominal states in discrete time are derived from the
kinematics of a rigid body:

pk+1 = pk + vk∆t+ 1
2 (Rq2R{qk}(am,k − ab,k))∆t2,

vk+1 = vk + (Rq2R{qk}(am,k − ab,k) + gk)∆t,
qk+1 = qk ⊗ qv2q{(ωm,k − ωb,k)∆t},
ab,k+1 = ab,k,
ωb,k+1 = ωb,k,
bk+1 = bk + dk∆t,
dk+1 = dk,

(9)
where p is the position in NED, v is the velocity in NED,
q is the attitude quaternion, Rq2R{·} is the attitude matrix
calculated from the attitude quaternion, qv2q{·} is the quater-
nion calculated from the rotation vector, and ⊗ denotes the
quaternion product. The nominal states, error states, system
inputs, and disturbances are respectively

x =
[
p v q ab ωb g

]′
,

δx =
[
δp δv δθ δab δωb δg

]′
,

um =
[
am ωw

]′
,

i =
[
vi θi ai ωi vb vi

]′ . (10)

The Jacobian of error states is

Fδx =



I3 I3∆t 03 03 03 03 03×2

03 I3 A C 03 I3∆t 03×2

03 03 B 03 −I3∆t 03 03×2

03 03 03 I3 03 03 03×2

03 03 03 03 I3 03 03×2

03 03 03 03 03 I3 03×2

02×3 02×3 02×3 02×3 02×3 02×3

[
1 ∆t
0 1

]


,

A = −Rq2R{qk}[am − ab]×∆t,
B = Rv2R{(ωm − ωb)∆t},

C = −Rq2R{qk}∆t.
(11)

where Rv2R is the rotation matrix from the error rotation
vector. The model process covariance is given by

Fi =


03 03 03 03 03×2

I3 03 03 03 03×2

03 I3 03 03 03×2

03 03 I3 03 03×2

03 03 03 I3 03×2

02×3 02×3 02×3 02×3 I2

 , (12)

Qi =


σ2
v∆t2I3 03 03 03 03×2

03 σ2
θ∆t2I3 03 03 03×2

03 03 σ2
a∆t2I3 03 03×2

03 03 03 σ2
ω∆t2I3x2

03 03 03 03 Qc

 ,

(13)

Qc = σ2
vb

[
∆t 0
0 0

]
+ σ2

vd

[
1
3∆t3 1

2∆t2
1
2∆t2 ∆t

]
. (14)

IV. SENSOR MODELS AND UPDATE STEP

In the update step, we use a GNSS sensor modeled in three
different ways for comparison and a camera to detect Fiducial
markers.
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A. GNSS linear model

We model the GNSS as a linear sensor to evaluate how
the filter performs with an ideal sensor. The GNSS is able
to directly measure the positions and velocities of the aircraft
with

hGNSS(xk) =
[
I6 06×10

]
xk, (15)

and its Jacobian is

HGNSS =
[
I6 06×10

]
Xδx, (16)

Xδx =

 I6 06×4 06×9

04×6 Qδθ 04×9

09×6 09×4 I9

 , Qδx =
1

2


−qx −qy −qz
qw −qz qy
qz qw −qx
−qy qx qw

 .

(17)
The covariance matrix is

VGNSS = diag(n2
dopσ

2
r , e2dopσ

2
r , v2dopσ

2
r , · · ·

· · · n2
dopσ

2
v , e2dopσ

2
v , v2dopσ

2
v),

(18)

where ndop, edop and vdop are the dilution of precision for north,
east, and down, σr is the user equivalent range error and σv is
the range rate error. With the linear model, we use nominal and
prediction equations without the GNSS bias states resulting in
16 states instead of 18.

B. GNSS pseudorange model

The pseudorange model uses a GPS constellation model
with Keplerian orbits according to the GPS SPS performance
standard [23] and the interface control document IS-GPS-
200M [24]. The observation function of the pseudoranges is

hρ(xk) =
[
hρ,1 · · · hρ,n

]T
,

hρ,j = rj + cbk,

rj =
√

∥∆pk,j∥2,
∆pk,j = pe

k − pk,j .

(19)

where n is the number of visible satellites considering a mask
angle mA; pe

k =
[
xe
k yek zek

]T
are the aircraft coordinates

in the ECEF frame, pk,j are the satellite j ECEF coordinates,
and c is the speed of light constant. The Jacobian is

Hρ =
∂hρ,j

∂xρ

∂xρ

∂x Xδx, xρ =
[
xe
k yek zek b

]T
∂hp,j

∂xp
=

[
xe
k

rj

ye
k

rj

ze
k

rj
c
]

∂xp

∂x =

[
Rte 03×13 03×1 03×1

01×3 01×13 1 0

]
Rte =

−sin(ϕ0)cos(λ0) −sin(λ0) −cos(ϕ)cos(λ)
−sin(ϕ0)sin(λ0) cos(λ0) −cos(ϕ0)sin(λ0)

cos(ϕ0) 0 −sin(ϕ0)


(20)

where ϕ0 is the reference latitude, and λ0 is the reference
longitude for the NED frame.

The noise covariance matrix is

Vp = Inσ
2
p (21)

C. GNSS pseudorange and pseudorange rate model

In this model, in addition to the pseudorange, we also add
the pseudorange rate measurements from the receiver. The
total observation function becomes

hρρ̇(xk) =

[
hρ

hρ̇

]
, hρ̇ =

[
hρ̇,1 · · · hρ̇,n

]T
∆vk,j = ve

k − vk,j

hρ̇,j =
∆vk,j ·∆xk,j

rj

(22)

where ve
k =

[
vex,k vey,k vez,k

]T
are the aircraft velocities in

ECEF frame and vk,j are the satellite j velocities in ECEF
frame. Therefore the Jacobian is

Hρ,ρ̇ =

[
Hρ

Hρ̇

]
, Hρ̇ =

∂hρ̇,j

∂xρ̇

∂xρ̇

∂x Xδx,

xρ̇ =
[
xe
k yek zek vex,k vey,k vez,k

]T
,

∂hρ̇,j

∂xρ
=

[
∆vk,l

rj

∆Pk,l

rj

]
,

∂xṗ

∂x =

[
Rte 03 03×12

03 Rte 03×12

]
,

(23)

with noise covariance matrix

Vpṗ =

[
Inσ

2
p 0n

0n Inσ
2
ṗ

]
. (24)

D. Camera and Fiducial Marker

The fiducial marker used in this work is the April Tag [16]
and is detected by a camera pointing down from the aircraft.
For our camera model, we use a pinhole camera with no
distortion. The pose measurement with the April Tag library
uses the tag size and the camera intrinsic parameters fx, fy ,
cx, and cy which are the focal length and optical center in x
and y.

The April Tag pose detection can measure the position
and orientation of the tags with respect to the camera. We
transform these detections to aircraft pose measurements with
homogeneous transformations, starting from the tag pose in the
NED frame to the camera, then from the camera to the aircraft
body frame. After the transformation, we have an observation
function given by

hm =

[
hp

hq

]
, hp =

[
xk yk zk

]
T , hq = rv(qk), (25)

where rv(·) is the quaternion to rotation vector conversion.
Although the orientation is observed in the quaternion space,
we model the Gaussian noises in the rotation vector space such
that the measurement equation becomes

zk,m =

[
zk,p
zk,q

]
=

[
hp(xk) + vmp

rv(qk ⊗ qv2q{vmq})

]
, (26)

which models the marker detection of the April Tag in the
image. Due to the quaternion, the innovation is calculated with
the quaternion difference:

ỹk =

[
zp − hp

rv(conj(qv2q{hp})(qv2q{zk,q}))

]
(27)

Thence the Jacobian of this measurement is

Hm =

[
I3 03 03 03×12

03 03 I3 03×12

]
. (28)
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The noise covariance matrix of the measurements is

Vm =

[
I3σ

2
vmp

03
03 I3σ

2
vmq

]
. (29)

V. SIMULATION RESULTS

In this section, we evaluate the ESKF with different sensor
models. To analyze filter consistency, we use the average
normalized estimation error squared (ANEES) [6] over 50
Monte Carlo Simulations. The sensor parameters for the INS
are: frequency = 100 Hz, σan = 5.3 · 10−3 m/s2, σaw =
3.6 ·10−2 m/s2, σωn = 10−2 rad/s, σωw = 10−4 rad/s2. For
the GNSS: frequency = 5 Hz, σr = 10 m, σr = 0.02 m/s,
σ2
vb

= 110−19 s, σ2
vb

= 2π22 · 10−20, ϕ0 = −23.217936◦,
λ0 = −45.891734◦, mA = 5◦. For the Fiducial Marker pose
estimate: σvmpxy

= 2 m, σvmpz
= 2 m, σvmq

= 0.15 rad, for
the camera: frame rate = 20 fps, fx = 1109 px, fy = 1109 px,
cx = 640 px, cy = 360 px, image size = 720× 1280 px. The
April Tag family "36h11" is used with size = 0.8 m.
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Fig. 1. Average Normalized Estimation Error Squared for the navigation
ESKF models.

Figure 1 shows the ANEES analysis results. The GNSS
linear model and INS/GNSS/Marker linear model simulations
both use Gaussian noises to generate the sensor measure-
ments and are consistent with the χ2(0.95) test after 60 s,
when our aircraft flies with constant velocity, staying 96.33%
and 98.38% within the boundaries respectively. With the
INS/GNSS ρρ̇ filter we use the pseudorange measurements
to calculate NED coordinates and velocities and update the
filter with the linear model. The ANEES metric for this filter
is also consistent at 96.98%; The INS/GNSS ρ filter uses only
the pseudorange updates, and due to the larger errors, fails the
consistency test but stays 84.92% within the boundaries. The
INS/GNSS ρρ̇ filter uses pseudorange and pseudorange rate
updates, staying 91.41% within the boundaries.

The RMSE in Table I shows that the pseudorange and
pseudorange rate filter has the best accuracy for position,
velocity, and attitudes when the GNSS sensor model the
satellite orbits. The INS/GNSS/Marker ON/OFF simulates the

first half of the trajectory with only the marker and the second
half with only GPS, showing that the Marker can substitute
the GPS when it is not available.

To validate the filter in a more realistic scenario we use the
Unreal Engine environment integrated with Matlab, where we
generate synthetic images for the aircraft ground truth in an
urban environment. The images are used for marker detection
and aircraft pose estimate with the camera when markers are
in the field of view. The GNSS model used generates the
pseudorange measurements with clock bias and pseudorange
rate measurements.

Figure 2 shows the camera view in the initial position with
the marker detection. We placed the marker at the initial
position and the aircraft performed an ’L’ shaped motion at
an altitude of 15 m. From 0 s to 60 s it moves 28 m North,
returns to origin, moves 28 m East, and returns to origin, with
attitude varying accordingly to rotary-wing aircraft, then up
to 180 s it moves Northeast with constant velocity and zero
attitude.

April detection on the camera image

200 400 600 800 1000 1200

px

100

200

300

400

500

600

700

p
x

Fig. 2. April Tag detection in the camera image at the initial position.

The results for the pseudorange and pseudorange filter
with the Unreal simulation show that the filter can correctly
estimate the aircraft position, velocity, and attitude in Fig. 3,
and all the sensor biases in Fig. 4. Note that, after 60 s, since
the aircraft moves with constant velocity and attitude, the yaw
loses observability.

The RMSE results in Table I show that the marker mea-
surements greatly improve filter accuracy, even though they
are only available for a few sections of the route.

Fig. 3. Unreal Simulation: Position Error, Velocity Error, Orientation Error.
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TABLE I
ROOT MEAN SQUARE ERROR (RMSE) FOR THE ESKF MODELS

Filter iter x y z vx vy vz θx θy θz

INS/GPS linear 50 0.5086 0.4999 1.2706 0.0103 0.0103 0.0082 0.0069 0.0075 0.0341
INS/GPS/Marker linear 50 0.1778 0.1775 0.3058 0.0101 0.0100 0.0082 0.0038 0.0040 0.0129
INS/GPS pρ̇ linear 50 0.6340 0.6112 1.3658 0.0114 0.0119 0.0094 0.0070 0.0078 0.0340
INS/GPS ρ 50 0.8230 0.8802 1.6383 0.3913 0.3893 0.1172 0.0108 0.0111 0.0278
INS/GPS ρρ̇ 50 0.4448 0.3727 1.5157 0.0090 0.0096 0.0094 0.0068 0.0076 0.0327
INS/GPS/Marker ON/OFF 50 0.5464 0.5600 1.1363 0.1409 0.1389 0.0152 0.0064 0.0072 0.0176
INS/GPS/Marker Unreal 1 0.0823 0.1616 0.4109 0.0075 0.0092 0.0092 0.0030 0.0029 0.0191

Fig. 4. Unreal Simulation: Accelerometer Bias, Gyrometer Bias, GNSS
Clock Bias.

VI. CONCLUSIONS

In this paper we formulate the ESKF for navigation to
fuse data from INS, GNSS modeled with pseudoranges and
Fiducial Marker pose measurements detected by a camera.
We evaluate filter consistency and RMSE. The results are
validated in simulation with synthetic images and pseudorange
measurements from simulated satellite orbits. The simulation
results show that the Fiducial Marker can both increase the
navigation accuracy and substitute the GNSS when the latter
is not available.
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