
XLI BRAZILIAN SYMPOSIUM ON TELECOMMUNICATIONS AND SIGNAL PROCESSING - SBrT 2023, OCTOBER 08–11, 2023, SÃO JOSÉ DOS CAMPOS, SP

Near-RT RIC and Emulated Basestation for Initial
xApps Development

Lucas Costa, Rebecca Aben-Athar, Cleverson Nahum, Glauco Gonçalves, Ilan Correa and Aldebaro Klautau

Abstract— The development of xApps for telecommunications
systems is a new and open field. With the growing demand for
new functionalities and the need for integration with the near
Real-Time Radio Intelligent Controller (Near-RT RIC) systems
and emulated base stations, it is essential to understand the
challenges and opportunities involved in this process. In this
context, we describe a virtualized and automated 5G environment
using containers, which aims to support the whole development
cycle of xApps.

Keywords— O-RAN, FlexRIC, Virtualization, OpenAirInter-
face.

I. INTRODUCTION

The Open Radio Access Network (O-RAN) is an archi-
tecture that, aims to optimize the future generation wireless
networks, increasing its efficiency. It also promotes functions
disaggregation, for example, by dividing the gNB functions
into Central Unit (CU), Distributed Unit (DU), and Radio
Unit (RU). Additionally, it allows the integration of closed-
loop intelligent systems through two types of RAN Intelligent
Controllers (RICs): Near-real-time RIC and non-real-time RIC
[1].

O-RAN is still under development, and there several closed
and open source implementations [1]. The FlexRIC, which
implements the near-real-time RIC. It consists of multiple
applications that support custom logic, known as xApps, and
the necessary services to execute these xApps. The advantage
of using FlexRIC lies in its flexibility, lightweight design, and
the pursuit of future compatibility [2].

The article [3] describes the implementation of a mobile
network using OAI. However, the network elements were not
automated using Docker containers. To create the BaseStation
for FlexRIC, OAI will be utilized. This open-source program
offers a complete software solution for all aspects of the 4G
LTE and 5G system architecture, such a gNodeB. [4]

We implemented the containerization of the near-time RIC
using FlexRIC software and the base station modules (CU,
DU, and RU), making the execution easier. The O-RAN
elements will be virtualized in containers that can be im-
plemented using Docker. We automated the deployment of
network components using Dockerfiles and Docker-compose,

Lucas Costa, Rebecca Aben-Athar, Cleverson Nahum, Glauco Gonçalves,
and Aldebaro Klautau are with LASSE - Telecommunications, Automation
and Electronics Research and Development Center, Belém-PA, Brazil (e-
mails: lucas.queiroz.costa, rebecca.athar@itec.ufpa.br, cleversonahum, glauco-
goncalves, aldebaro@ufpa.br). This work was supported by the Open-
RAN Brazil - Phase 2 project (MCTI grant Nº A01245.014203/2021-14),
SAMURAI project (FAPESP grant #20/05127-2), and CNPq-Brasil (grant
405111/2021-5).

which are publicly available on GitHub1. Thus, the content of
this work is a way to facilitate the creation of the environment
and the integration of OpenAirInterface (OAI) with FlexRIC.

Additionally, it’s worth noting that although the system
can be implemented in various ways, the use of Docker
significantly simplifies the replication of the environment
across different machines. Docker’s containerization approach
allows for easy packaging and distribution, ensuring consistent
behavior regardless of the host system. This characteristic sim-
plifies the setup process and enables deployment on multiple
machines, promoting greater scalability and reproducibility of
the environment.

II. FLEXRIC AND VIRTUALIZATION

The near-time RIC, such as the FlexRIC software, plays
an essential role in O-RAN architecture, it does the real-time
orchestration and control of radio resources, ensuring efficient
and dynamic allocation of radio resources to different devices
and services [2].

FlexRIC is a Software Development Kit (SDK) that pro-
vides a standardized interface for programming and control-
ling network resources in SD-RANs (Software-Defined Radio
Access Networks), designed to overcome challenges such as
the complexity of network resources and technology standards.

The SDK offers tools and libraries for creating and de-
ploying custom logic applications for the RIC called xApps.
These xApps can be customized to meet different needs and
functions within the SD-RAN architecture. With the FlexRIC
SDK, users can define and implement their xApps based on
their specific use cases. The SDK provides a framework for
executing these xApps and offers the necessary services and
interfaces for seamless integration with the RAN infrastruc-
ture. Additionally, it offers an open and programmable inter-
face, facilitating potential software-defined network solutions.

Fig. 1 shows an overview of the FlexRIC architecture (Near-
RT RIC) and how it connects to other standardized gNB func-
tions (CU, DU, and RU). The FlexRIC can be segmented into
two parts. On the top is the component called Specialization,
which implements controller specialization through iApps (an
application internal to the controller) that implements specific
behavior or services that can be used by xApps (External
Application). The bottom part is the FlexRIC Server Library
that is an event-driven system that manages connections and
messages between iApps and gNB functions.

Following current standards, telecom setups are deployed as
virtualized functions [5], which can be implemented through

1https://github.com/lasseufpa/flexric_oai.git



XLI BRAZILIAN SYMPOSIUM ON TELECOMMUNICATIONS AND SIGNAL PROCESSING - SBrT 2023, OCTOBER 08–11, 2023, SÃO JOSÉ DOS CAMPOS, SP

Fig. 1: Flexric architecture, gNB functions and BaseStation
OAI.

Docker containers. Two essential tools are Docker Compose
and Dockerfile when working with Docker containers.

III. IMPLEMENTED SYSTEM DESCRIPTION

The setup was implemented on a server with Core i5-9400
CPU @2.90GHz and 8GB RAM, running Ubuntu 22.04. The
gNB functions and FlexRIC were deployed into four contain-
ers: one for FlexRIC, another for CU, a third for emulating
DU and RU (denominated DU container), and finally, the OAI
BaseStation. After creating images with Dockerfiles, Docker
Compose was used to run the containers. The containers are
linked by a Docker network, simplifying the orchestration and
defining their configuration in a single YAML file for the
environment.

Detailed steps for setting up the FlexRIC environment can
be found in the GitHub git repository. It is crucial to generate
the corresponding images before proceeding to ensure a suc-
cessful configuration of FlexRIC. The docker-compose will
create separate containers for each component and establish
the necessary connections with FlexRIC.

To perform the setup implementation, we need to realize
some steps:

• Clone the repository that contains the Dockerfile and
docker-compose files.

• We must create two images (FlexRIC and OAI). The
images contain all the required files for running FlexRIC,
the emulated components of O-RAN, and OAI.

• Run docker-compose to generate the containers. It will
change the configuration of the components to connect
them to the FlexRIC container and make requests to run
NearTime-RIC, CU, DU, and OAI.

So, after these steps, FlexRIC and the components such as
CU, DU, and BaseStation will be created, according image 1.

The image 2 shows what you can expect to see when
emulating the connection between CU and FlexRIC. The initial
lines represent the initialization of FlexRIC, and the IP address
to connect to is provided at the end. In the second part, the
CU requests to connect to FlexRIC by sending a message that
FlexRIC understands, and thus the connection is established.

Fig. 2: FlexRIC’s log when CU connects with its.

IV. CONCLUSIONS

Automated installation simplifies the configuration process,
allowing for easy execution of new projects and xApp testing
without worrying about the complexity of environment con-
figuration. This enables a more efficient and productive devel-
opment cycle. Dockerfile and Docker-Compose can configure
the environment on nearly any computer, making it highly
portable and compatible with different operating systems. This
approach reduces the need for complex manual configurations
and minimizes potential dependency conflicts. Moreover, it en-
hances the efficiency of deploying development environments,
saving time and effort.

REFERENCES

[1] M. Polese, L. Bonati, S. D’Oro, S. Basagni, and T.
Melodia, “Understanding o-ran: Architecture, interfaces,
algorithms, security, and research challenges,” IEEE
Communications Surveys & Tutorials, 2023.

[2] R. Schmidt, M. Irazabal, and N. Nikaein, “Flexric: An
sdk for next-generation sd-rans,” in Proceedings of the
17th International Conference on emerging Networking
EXperiments and Technologies, 2021.

[3] A. Mufutau, F. Guiomar, A. Oliveira, and P. Monteiro,
“Software-defined radio enabled cloud radio access net-
work implementation using openairinterface,” Wireless
Personal Communications, 2021.

[4] N. Nikaein, M. K. Marina, S. Manickam, A. Dawson,
R. Knopp, and C. Bonnet, “Openairinterface: A flexible
platform for 5g research,” 2014.

[5] G. L. Santos, D. d. F. Bezerra, E. d. S. Rocha, et
al., “Service function chain placement in distributed
scenarios: A systematic review,” Journal of Network and
Systems Management, 2022.


