XLI SIMPOSIO BRASILEIRO DE TELECOMUNICACOES E PROCESSAMENTO DE SINAIS - SBrT 2023, 08—11 DE OUTUBRO DE 2023, PARQUE TECNOLOGICO DE SAO JOSE DOS CA

Performance Analysis Of Out-of-the-shelf
Regressors for Accurate Indoor Positioning

Bismark C. Teixeira, Julia B. Silva, Diego A. Sousa, Daniel C. Aratjo

Abstract— This paper presents a novel indoor positioning
system utilizing machine learning for user localization based on
path loss estimates from strategically placed access points. We
compare the performance of different out-of-the-shelf regressors
and leverage the Extra Trees Regressor algorithm’s randomness,
avoiding overfitting and outperforming traditional methods like
K-Nearest Neighbors. Our system, simulated under the 3GPP
28 GHz indoor channel model, focuses on improving Root
Mean Square Error and R-squared metrics. Findings affirm
the system’s robustness and machine learning’s potential in
enhancing indoor positioning accuracy.
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I. INTRODUCTION

Accurate real-time positioning is crucial for enabling
location-based service (LBS) and is increasingly important in
complex indoor environments due to the rapid expansion of the
Internet of Things, advancements in communication technol-
ogy, and the emergence of Industry 4.0, which, emphasizes the
integration of intelligent systems and automation. This show-
cases the need for precise indoor localization. While outdoor
localization benefits from mature technologies like Global
positioning service (GPS), indoor spaces present unique chal-
lenges due to their complexity and GPS signal obstruction
from objects with diverse shapes, and sizes, both stationary
and moving, impacts indoor positioning accuracy [1].

To address these challenges and accommodate to the diverse
demands of indoor localization applications within Industry
4.0 settings, such as smart factories and warehouses, indoor
localization systems must improve system accuracy, power
consumption, system magnitude, and deployment efficiency.
Developing and integrating various solutions is essential to
effectively serve a wide range of indoor localization appli-
cations, including determining the location of cars or their
owners in underground parking lots [1].

LBS have become integral to modern society, with appli-
cations spanning from navigation and emergency response
to geotargeted advertising and social networking. To provide
accurate positioning data for these services, various ranging
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techniques are employed, such as Received Signal Strength In-
dicator (RSSI) [2], Time-of-Arrival (ToA), Time-Difference-
of-Arrival (TDoA) [3], and Channel Estimation [4], [5].
RSSI calculates the distance between devices by measuring
the power of received signals, which attenuate over distance.
ToA measures the time it takes for a signal to travel from the
transmitter to the receiver, while TDoA compares the arrival
times of signals at multiple receivers to triangulate a location.
Channel Estimation, on the other hand, involves the estimation
of the characteristics of the transmission channel to refine
the accuracy of positioning. By leveraging these techniques,
LBS providers can accommodate to the growing demand for
precise, real-time location information in today’s increasingly
connected world [6].

The methods mentioned above face a few obstacles, such as
limited accuracy, high computational complexity, and insuffi-
cient processing power, among others. Conversely, artificial
intelligence (AI) and machine learning (ML) have proven
successful in indoor localization due to their capacity for
decision-making that does not rely on precise models.

Various ML techniques have been utilized to address non-
line-of-sight (NLOS) identification and mitigation challenges.
Specifically, supervised and unsupervised machine learning
methods were employed in [7]-[9], while deep learning (DL)
was applied for NLOS mitigation in [10]. In [11], a DL-
based recursive neural network (RNN) was used to manage the
fluctuations in RSSI signals by analyzing their time-domain
correlations. Furthermore, DL techniques have been leveraged
to uncover hidden features of RSSI measurements, helping to
minimize the collection of fingerprint data in [12] and facilitate
robot navigation in unknown environments in [13].

LBS technologies are vital for enabling automation within
Industry 4.0. To ensure high-quality processes in this advanced
industrial landscape, we propose an analysis and comparison
of various supervised methods applicable to fingerprint-based
systems. This examination will facilitate the selection of the
most suitable approach for achieving optimal performance in
diverse Industry 4.0 applications.

Fingerprint-based systems method was developed to locate
devices in a specific environment using radio signals, including
telecommunications parameters such as delays, signal strength,
and others [14]. These systems offer advantages for location-
based services (LBS), particularly in indoor environments
where traditional localization technologies, such as GPS, may
not be effective. One key benefit of these systems is their
robustness. They can handle signal obstructions and multi-path
effects that are common in indoor settings due to the presence
of walls, furniture, and other objects. This robustness allows
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them to maintain performance even in complex environments.
These systems are also versatile, capable of utilizing various
types of signals, such as Wi-Fi, Bluetooth, RFID, or even mag-
netic fields. This adaptability enables them to work in diverse
environments and accommodate different LBS requirements.

Furthermore, once the fingerprint database has been estab-
lished, these systems can efficiently manage a large number
of users or devices without the need for significant additional
investments in infrastructure, lowering deployment costs.

This paper proposes a solution that employs multiple access
points to collect diverse measurements from a facility floor.
These measurements are gathered historically from devices
that have previously traversed the area. The access points
connect to a central unit that processes the assembled dataset
to estimate the position. This information can subsequently be
utilized by robots operating within the environment.

The performance of this solution was evaluated using the
QUADRIGA model, which adheres to the 3rd Generation
Partnership Project (3GPP) specification. The QUADRIGA
model is based on the specifications of 3GPP, which is a
consortium of telecommunications associations from various
countries that defines standards and recommendations in GSM
and WCDMA technologies for mobile devices [15]. Addition-
ally, our models take into account the discretization of the
RSSI. By incorporating these factors, the proposed approach
aims to provide a robust and accurate indoor localization
system for various applications.

II. PROBLEM DEFINITION

This work addresses an indoor environment with I access
points (APs), each with N antennas, and a single-antenna
device. The locations of AP ¢ and the user are represented
as pi = [Pz Dy and @ = [gg,qy], respectively. We
assume that the APs are linked to a localization center, where
measurements are processed to estimate the user’s position.

A. Transmission Model

In this orthogonal frequency division multiplexing (OFDM)
setup, after cyclic prefix removal and fast Fourier transform
(FFT), the signal received at subcarrier m from the ith AP can
be given as:

ym, i = /pmh[m, iJz[m] + n[m, ], (1)
where y[m, ] is the received signal, p,, the power allocated
to subcarrier m, and x[m] a pilot symbol with |z[m]| = 1.

n[m, ¢] is a Gaussian noise vector with zero mean and variance
%. Given this model, our goal is to estimate the vector q,
representing the user’s position.
The channel hm,i] is a sum of various paths, with the
line-of-sight path presumed as the strongest:’
L—1
h[m,i] = Z pre’®ra(f;)er? mAIT (2)
1=0
For path loss estimation, each AP applies the OFDM signal
model as follows:

3)

This information is conveyed to a central network that runs an
algorithm to estimate the user’s location. Traditional methods
such as multilateration are often employed in this context,
yet they tend to struggle with non-linear aspects, including
quantization during the backhaul communication process.
Machine learning, on the other hand, emerges as a promis-
ing alternative due to its aptitude for managing non-linearity,
estimation error, and multipath interference. The following
section will outline the AP distribution and the system archi-
tecture within which our machine-learning algorithm operates.

III. IMPLEMENTATION

In this section, we delve into the core of our solution for
user position estimation in indoor scenarios. Specifically, we
elucidate the processes involved in constructing the dataset,
detailing the methodologies involved, and how they contribute
to the overall setup. Additionally, we discuss our approach to
applying machine learning algorithms for position estimation,
highlighting the strategic steps and logical considerations
driving our techniques. By examining these components, we
provide a comprehensive insight into our innovative solution,
underscoring its efficacy and adaptability in facilitating reliable
user position estimation in indoor environments.

A. The Dataset Construction

The construction of an accurate and comprehensive dataset
forms a crucial component of our proposed solution. Serving
as the primary input for the machine learning algorithm, the
dataset enables the algorithm to discern patterns and make
precise user position estimations. The reliability and quality
of the dataset can have an impact on the system’s overall per-
formance. There are two primary methods for data acquisition
in this context: site surveying and channel estimation.

The site survey method is an intensive, field-based approach
where a team manually measures and records path loss at
various points within the location. Concurrently, they log the
corresponding user positions. These path loss measurements
and their corresponding positions are then paired and recorded
in a dataset, effectively mapping the indoor environment in
terms of user position and path loss. While this method can
provide high-quality data and detailed environmental insights,
it may be time-consuming, labour-intensive, and potentially
costly, particularly in large or complex environments.

Conversely, the channel estimation method employs the
OFDM properties to collect user measurements, as per Eq. (1).
These measurements are processed to estimate the channel and
extract path loss, as described in Eq. (3). As the user moves
within the environment, each position and its corresponding
path loss estimate are recorded in the dataset. This approach
offers cost and efficiency advantages, enabling the continuous
and historical gathering of measurements during system oper-
ation. However, the data quality may be compromised due to
noise and potential errors in the estimation process.

Our solution operates within a system architecture compris-
ing multiple APs strategically positioned within the indoor
environment. These APs, affixed to the ceiling and distributed
throughout the area as shown in Figure 1, gather signal data
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Fig. 1: Industrial warehouse with 6 APs and a single user on
a straight path.

from various points, process this information, and estimate the
path loss. These estimates are then conveyed to a core network,
the critical hub for data collection and processing within the
system architecture.

The core network is responsible for assembling these indi-
vidual estimates into a comprehensive dataset, which provides
the necessary information for our machine learning algorithm
to accurately estimate the user’s position. The role of the
core network extends to managing efficient data processing,
synchronization, and storage, ensuring the dataset is both
reliable and up-to-date.

The core network can be implemented either locally or in
a cloud-based environment. A local setup may offer lower
latency and superior data security but may require substantial
resources for setup and maintenance. On the other hand, a
cloud-based system has benefits such as scalability, flexibility,
and simplified management. The choice between these ap-
proaches will largely hinge on factors such as data security
requirements, system requirements, available resources, and
operational scale.

The system architecture is purposefully designed to support
the effective operation of the machine learning algorithm. The
strategic positioning of the APs allows for broad coverage and
data diversity, potentially enhancing user position estimation
accuracy. Furthermore, the core network’s role in building and
maintaining the dataset ensures the machine learning algorithm
is fed with high-quality, diverse, and current data to perform
its task effectively. This dataset is essentially a position-path
loss map, used as the foundation for the supervised machine
learning algorithm.

B. User Positioning Estimate

The estimation phase, the cornerstone of our solution,
leverages the power of the machine learning algorithm to
predict the user’s position accurately. Utilizing numerous
supervised machine learning algorithms, this phase marks the
culmination of the collected dataset’s journey and its transition
into actionable performance insight.

Supervised learning is a machine learning approach where
the model is trained on a labelled dataset. In our case, the
labels correspond to the known positions of the user, and the
features are the path loss estimates captured by the APs. By
training the model on this data, it learns to associate specific
path loss estimates with precise user positions. This is akin
to drawing an intricate map where path loss estimates lead
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Fig. 2: Block diagram of the proposed solution.

to specific user positions, a mapping that the algorithm learns
during the training phase.

However, path loss estimates can be prone to various
disturbances, such as channel estimation errors, quantization
noise, and transmission errors, especially considering that
these values need to be sent over the network. These errors
underline the importance of using a robust and noise-tolerant
machine learning algorithm.

Specifically, the Extra Trees Regressor (ETR) is equipped
to handle these disturbances. It builds multiple decision trees
using the training data and amalgamates their predictions to
output a final prediction. This ensemble approach enhances
accuracy and provides robustness against overfitting. Consid-
ering the intricate nature of indoor positioning, marked by
multipath effects and environmental complexities, the ETR is
an apt candidate to be chosen among the other algorithms
analyzed.

The success of the estimation phase is heavily reliant upon
the quality and breadth of the dataset used for training. An
exhaustive and accurate dataset culminates in a more reliable
position estimation, reinforcing the significance of the dataset
construction phase discussed earlier. In subsequent sections,
the algorithms’ performance and intricacies will be better
gauged and compared.

C. The Algorithm: ETR

The ETR is an ensemble machine-learning algorithm specif-
ically tailored for regression problems. It’s a variant of the
Random Forest algorithm, which functions by constructing
multiple decision trees during the training phase and yields
the mean prediction of the individual trees for regression
problems.

An additional layer of randomness, indicated by the "Extra"
in Extra Trees, sets it apart from its counterparts. Beyond the
standard feature and threshold randomization used in Random
Forests, the ETR introduces randomness in decision tree node
splitting. Instead of calculating the optimal split point for each
feature, it randomly selects a subset of potential split points
and determines the best among them.

The ETR significantly reduces the model’s variance through
this injection of additional randomness. This added element
helps prevent overfitting, ensuring the model does not become
overly complex and therefore prone to errors. However, the
same randomness might lead to increased bias, potentially
limiting the model’s ability to capture the data’s underlying
patterns as effectively as other algorithms that use more
deterministic methods.
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In terms of computational complexity, the ETR ETR gen-
erally outperforms other tree-based algorithms. The complex-
ity of training an ETR model, which involves constructing
multiple decision trees, is typical O(Ndlog(N)) where N is
the number of samples and d is the number of dimensions.
However, the prediction complexity is low, only O(log(NV)),
making it an efficient option for large datasets.

Furthermore, the ETRs ability to handle high-dimensional
data gives it an edge over classical algorithms like K-Nearest
Neighbors (K-NN). The K-NN algorithm, while effective
in certain contexts, often struggles with high-dimensional
data due to the curse of dimensionality. This phenomenon
causes data points in high-dimensional space to be far apart,
complicating the identification of meaningful neighbours. On
the contrary, the ETR, with its randomized tree construction,
can more effectively handle high-dimensional data, potentially
leading to better performance.

While the ETR proves a potent solution for regression
tasks, particularly those involving high-dimensional or noisy
datasets, it’s essential to carefully assess its performance
against other algorithms for the specific problem at hand. This
consideration will ensure that the chosen algorithm is the best
fit for the problem’s unique requirements and specifics.

In the following section, the performance of the ETR
is compared to other machine learning algorithms such as
AdaBoost, Bayesian Regressor, Elastic Net Regressor, and
Support Vector Machines. This comparative analysis further
elucidates the strengths and weaknesses of each algorithm
and provides insights into their performance in the context
of indoor positioning systems.

IV. RESULTS

In evaluating our proposed solution, we considered the 28
GHz channel model with the indoor channel following the
3GPP model specification. For a realistic representation of the
channel, we utilized Quadriga, a versatile 3D radio propagation
simulator, to generate the channel [16].

Our analysis was based on 100 potential scenarios for the
respective transmission powers, each one presenting a different
setting and context for the user. In each scenario, we simulated
100 users, each one being placed and moving randomly in the
environment, as depicted in Fig. 1. This offered us diverse
situations to test our solution’s robustness and reliability.

Our evaluation aimed to scrutinize the effectiveness of
our architecture using the ETR and compare it with other
algorithms commonly employed in the literature. We focused
our analysis primarily on two key metrics: the Root Mean
Square Error (RMSE) of the position error and the coefficient
of determination, called R-squared (R2), of the position error.

The RMSE is a frequently used measure of the differences
between values predicted by a model and the values observed.
In this context, the RMSE for the position error can be
computed as follows:

1 n
RMSE = |- PN 4
n;ym an || (4)

where q,, represents the nth observed position of the dataset,
Qy, is the predicted position.

The R2 metric, also known as the coefficient of determi-
nation, is a statistical measure that represents the proportion
of the variance for a dependent variable that’s explained by
an independent variable or variables in a regression model. In
this case, the R-squared of the position error can be calculated
as follows:

Z:L:l |l — (AlnHQ
e llan —all?’
where q is the mean position of the dataset.

Seventy percent of the data was set aside for training, and
thirty percent for testing. In the following charts, the regression
models estimated the distance values to compare them with
the actual user positions, generating the CDF for error, mean
absolute error (MAE), and R2.

Figures 3a, and 3b represent the CDF of the MAE distance
of the regressors for 0, 5, 10, and 15 dBm of transmitting
power, respectively. It is worth noting that Decision Tree,
KNN, Extra Trees and Random Forest yield better perfor-
mance, the same holding true for Figures 3c, and 3d which
represent the CDF of the R2 distance of the regressor at
different transmitted powers. Figure 4b shows the MAPE for
the best regressors at 0 and 15 dBm. It is noted that 0 and 15
dBm yield similar results, as there is a proportional change in
value between the power of the access points and the user’s
position in the simulated environment.

By examining these regressors through the lens of the R2
chart, specifically focusing on the optimal score region around
1, and at distinct SNR values (0 and 15 dBm respectively) as
previously depicted, the comparative analysis narrows down
to the four top-performing regressors: Random Forest, Deci-
sion Tree, Extra-Trees, and KNN. The Extra-Trees Algorithm
emerges as the closest to achieving the ideal score. Further,
the Table I delineates the MAE values at the 10%, 50%, and
90% thresholds. This comparison highlights the performance
differences among the four regressors, spotlighting Extra-Trees
as the primary focus.

R2=1-

®)

TABLE I: CDF percentile of MAE values for some of the
regressors

MAE Regressors

% Extra-Trees K-Nearest Neigh. Random Forest Decision Tree
0 dBm 15dBm | 0dBm | 15dBm | O dBm 15dBm | 0dBm | 15dBm
10 0.13 0.13 0.15 0.14 0.32 0.32 0.14 0.14
50 0.14 0.14 0.16 0.16 0.40 0.40 0.16 0.16
90 0.16 0.16 0.18 0.18 0.59 0.58 0.17 0.17

V. CONCLUSION

Utilizing the QUADRIGA model, we analyzed various
access points in over 100 potential scenarios with differing
power transmitters. This enabled a comprehensive study of
indoor localization regressors and the application of the ETR.
The Regressor’s performance was both accurate and reliable,
as validated by CDF metrics such as R2 analysis.

For future research, it is critical to incorporate data from ac-
tual site surveys. This will enhance our algorithm and position
our regressor as an effective, real-world positioning system.
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Furthermore, assessing and reducing the number of access
points is vital for creating a realistic application simulation.
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