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New approaches for the Kernel-based Adaptive
Filter with Epanechnikov kernel
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Abstract— Kernel Adaptive Filtering has proven to be
an effective solution for nonlinear channel equalization,
outperforming traditional linear filters. In this context,
we highlight the Kernel Maximum Correntropy (KMC)
filter, in which the use of the Epanechnikov kernel has
shown to be a promising approach. However, this method
presents two drawbacks: the numerical instability that
caused divergence and the need of training constantly. In
this paper, to address the first problem, a sliding window
procedure was proposed. To address the second problem,
a decision direct mode was implemented. Both versions
showed a desirable behavior, with no performance loss.
A study in noisy scenarios was also considered.
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I. INTRODUCTION

Adaptive filtering plays a vital role in various signal
processing applications, including channel equalization.
While linear algorithms, such as the Least Mean Squares
(LMS) [1], have been widely used due to their quick
convergence and accuracy, their effectiveness is limited in
nonlinear systems [2]. To address this limitation, kernel
adaptive filtering (KAF) algorithms have gained popular-
ity for their ability to handle nonlinear problems through
mapping input data to higher-dimensional spaces (referred
to as reproducing kernel Hilbert space - RKHS) using ker-
nel functions [3]. The Kernel Least-Mean-Square (KLMS)
algorithm and Kernel Recursive Least Squares (KRLS) are
well-known examples of this class of filter [4].

The choice of an appropriate cost function is crucial
in kernel adaptive filtering. Traditional measures like
Mean Squared Error (MSE) used in KLMS may yield poor
performance in non-Gaussian scenarios [5]. To overcome
such issue, Information Theoretic Learning (ITL) criteria,
which capture higher-order statistics, have been employed
[2], [6]. Among these criteria, the Maximum Correntropy
Criterion (MCC) has gained attention due to its simplic-
ity and robustness. The Kernel Maximum Correntropy
(KMC) algorithm combines MCC with KAF and has shown
promising performance, particularly in impulsive noise
environments [7], [8].

In [7], a study considering different kernel functions
for calculating the correntropy measure in the context of
KAF was presented. The paper considered the classical

Lucas H. Gois and Aline Neves, Federal University of ABC,
Santo André - SP, e-mail: lucas.gois@aluno.ufabc.edu.br and
aline.neves@ufabc.edu.br. Denis G. Fantinato, State University of
Campinas, Campinas - SP, e-mail: denisf@unicamp.br

Gaussian kernel and proposed the use of the Epanech-
nikov kernel. The later has been considered in several
works, showing good performance [9]–[11]. However, even
though the KMC with Epanechnikov kernel (KMC-EPA)
performed well, specially in nonlinear channel scenarios,
the resulting algorithm had a drawback: it suffered from a
numerical instability that led it to diverge after converging
through a certain number of iterations. Since the size
of the KMC filter increases linearly with the number of
training data, this paper proposes the use of a sliding win-
dow to reduce the complexity of the KMC-EPA algorithm
and avoid its divergence. In [12], the authors proposed
using this approach on the KRLS, resulting in the Sliding
Window KRLS (SW-KRLS) algorithm and demonstrating
good performance in a nonlinear Wiener system.

In addition, this paper also proposes the use of the
decision-directed (DD) approach [13] with KAF filters. To
the knowledge of the authors, such approach was not
yet presented in the literature. In this technique, the
algorithm is able to continue the process of adaptation
of the filter in a blind fashion, after a short period of
supervised training using the transmitted signal.

The structure of this paper is as follows: Section II pro-
vides an overview of the KMC and the KLMS algorithm.
Section III discusses the algorithms using the sliding
window. Section IV explores the algorithms with the DD
approach. Section V presents the performance analysis of
the algorithms in various equalization scenarios. Finally,
Section VI concludes the work.

II. FOUNDATIONS

In this section, we present the channel equalization
problem using the Kernel Adaptive Filtering technique,
along with the relevant algorithms discussed in the liter-
ature.

A. Channel Equalization Problem

Figure 1 depicts the block diagram of channel equaliza-
tion performed by a Kernel Adaptive Filter. The objective
is to recover the initially transmitted signal sn. The
algorithm updates the filter using the channel output xn =
h(sn) and the error, en, computed between sn and the filter
output yn during the training phase. Once the training
period concludes, the algorithm is able to switch to the
Directed-Decision (DD) approach, where a symbol decision
device receives yn to reconstruct the original transmitted
signal, producing the estimated signal ŷn. This estimated
signal is then used to calculate the error en = yn − ŷn.
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Further details about this approach will be explained in
subsequent sections.
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Fig. 1. Block Diagram of Communication System.

B. Maximum Correntropy Criterion

Considering the channel equalization context, the max-
imum correntropy criterion (MCC) aims to maximize the
correntropy between the samples of the transmitted signal
si and the estimated signal yi at the output of the
equalizer. The MCC cost function is given by [8]:

Jn = 1
N

n∑
i=n−N+1

κσ (si, yi) , (1)

where yi is the filter output, N is the size of the training
data, and κ(·) denotes a symmetric positive definite kernel
function.

Correntropy can be seen as a similarity measure be-
tween two random variables [14]. It is interesting in the
equalization process since it is able to explore the temporal
characteristics of the signal [14]. Mathematically, it is
defined as:

Vσ(s, y)= E [κσ (s− y)] , (2)

where σ represents the kernel width and E[·] denotes
the expectation operator. In the literature, the kernel is
usually chosen as the Gaussian function:

κG(si, yi)= 1p
2πσ

e−
(si−yi )2

2σ2 , (3)

but the Epanechnikov kernel [15], shown below, has also
been recently used successfully in certain applications [9]–
[11]:

κE(si, yi)= 3
4σ

(
1−

( si − yi

σ

)2
)
, −σ< si − yi <σ. (4)

C. Kernel Adaptive Filtering

Linear adaptive filters often struggle to achieve high
performance in nonlinear systems. Therefore, kernel meth-
ods are a robust choice for this task due to their universal
approximation and convex optimization capabilities [4].
According to Mercer’s Theorem, kernel-induced mappings
transform the input data xi to a high-dimensional fea-
ture space IF, known as the reproducing kernel Hilbert
space (RKHS) and denoted as ϕ(xi) in kernel adaptive
algorithms [2], [4].

Additionally, it is viable to use the inner product of
the transformed input data, which allows the application
of proper linear operations. This approach is known as

"kernel trick" [4]. As per the representer theorem [4], [8],
it is possible to express the system output in terms of the
data by the following equation:

y= ∑
i∈N

ciκσ(xi, .), (5)

where ci represents the weight coefficients obtained from
the training data, and κ is a symmetric positive definite
kernel function. The topology of the KAF algorithm, as
discussed in [4], is similar to a growing radial basis
function (RBF) network that expands linearly with the
size of training data. The parameters of each node are
computed within the RKHS using the gradient ascent
approach. The coefficients of the KAF filter, Ω, can be
iteratively updated:

Ωn =Ωn−1 +µ∇Jn, (6)

where µ is the step size. Kernel width and step size effects
on the algorithm have been studied in [7], [11].

D. KMC with the Gaussian kernel
Using the MCC cost function (1) in (6) with the paired

sample {sn,ϕ(xn)}, the adaptive filter weights Ω can be
computed using the Gaussian kernel (3) and the stochastic
gradient approximation [8]:

Ωn+1 =Ωn +µ
∂κG(sn,ΩT

nϕn)
∂Ωn

=µ
n∑

i=1
exp

(−e2
i

2σ2

)
e iϕi, (7)

where ϕi is a simplified notation for ϕ(xi), and en =
sn −ΩT

nϕn. The system output is now obtained using the
"kernel trick", which is expressed in terms of the inner
product between the new input and the previous inputs
weighted by prediction errors [3], [4], [8]:

yn+1 =ΩT
n+1ϕn+1

=µ
n∑

i=1
exp

(−e2
i

2σ2

)
e iϕ

T
i ϕn+1

=µ
n∑

i=1
exp

(−e2
i

2σ2

)
e iκG(xi, xn+1). (8)

The algorithm, initially named Kernel Maximum Cor-
rentropy (KMC) [8], will be referred to as KMC-GAU in
this work since it uses the Gaussian kernel.

E. KMC with the Epanechnikov kernel
As proposed in [7], the stochastic gradient, given by (5),

can be computed using the Epanechnikov kernel (4) as
follows:

Ωn+1 =Ωn +µ
∂κE(sn,ΩT

nϕn)
∂Ωn

=µ 3
2σ3

n∑
i=1

e iϕi. (9)

Similar to the KMC-GAU (8), the “kernel trick” is used
to obtain the following system output:

yn+1 =ΩT
n+1ϕn+1 =µ 3

2σ3

n∑
i=1

e iκE(xi, xn+1). (10)

The algorithm with the Epanechnikov kernel will be
called KMC-EPA.
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III. SLIDING WINDOW

In [7], it was observed that the KMC-EPA algorithm
tends to diverge after a certain number of iterations,
indicating potential numerical instability. This issue can
arise due to the fact that the size of the network increases
with the number of training data [4]. To address this
problem, regularization techniques are commonly applied
to control the size and complexity of the RBF network [4].

One possible solution to mitigate this instability is to
employ a sliding window technique, which consists in
taking only the last Nw of the training data into account
for the filter output calculation. In [12], the authors
proposed a similar approach applied to the KRLS. In this
case, the size of the RBF network would be limited to
Nw, also known as the window size. The pseudo-code of
this approach applied to the KMC-EPA can be found in
Algorithm 1, named KMC-EPASW.

Algorithm 1 KMC-EPA with Sliding Window
1: for i = Nw +1 to N do
2: for j = i−Nw to i−1 do
3: if |x( j)− x(i)| <σ
4: y(i)= y(i)+µ

(
3

2σ3

)
e( j) κE(x( j)− x(i))

5: else
6: y(i)= y(i)+0;
7: end if
8: end for
9: e(i)= s(i)− y(i)

10: end for

This approach was also applied to the KMC-GAU that
will be named KMC-GAUSW.

IV. DECISION-DIRECTED ALGORITHM

The decision-directed (DD) algorithm can be described
as a sort of "modified Wiener criterion" [13], in which
the desired symbol sn used during the training period is
replaced by the estimate given by a decision-device, that
receives the filter output yn and approximates the symbols
using the constellation of the transmitted signal [1]. The
idea behind this method is to give a practical solution to
allow the filter adaptation after the training period, where
the transmitted signal is no longer known at the receiver.
Thus, adaptation continues in a blind mode.

Considering that the training period is capable of bring-
ing the equalizer to a situation where the equalizer output
is sufficiently close to the original transmitted sequence,
also known as an opened eye pattern, it is possible to guide
the adaptation process using the estimated signal given by
the decision device [13]. By calculating the error e i using
the estimated signal, we are able to modify the algorithm
presented by switching between training mode and DD
mode:

epredict = ŷn −ΩT
nϕn = ŷn − yn. (11)

where ŷn is the estimated signal obtained at the decision
device output (see Fig. 1). Applying (11) to the KMC-

EPA algorithm, we obtain the KMC-EPADD, detailed in
Algorithm 2.

Algorithm 2 KMC-EPA Decision-Directed
1: for i = N +1 to TotalSamples do
2: for j = 1 to i−1 do
3: if |x( j)− x(i)| <σ
4: y(i)= y(i)+µ

(
3

2σ3

)
epredict( j) κE(x( j)− x(i))

5: else
6: y(i)= y(i)+0
7: end if
8: end for
9: ŷ(i)= DecisionDevice(y(i))

10: epredict(i)= ŷ(i)− y(i)
11: end for

In parallel, (11) was applied to KMC-GAU leading to
the KMC-GAUDD.

V. RESULTS

In this section, we will examine the performance of
the KMC-EPASW and the KMC-EPADD algorithms in
linear and nonlinear scenarios, based on [7]. For com-
parison, we include the KMC-GAUSW and KMC-GAUDD,
which use the classical Gaussian kernel, and also the
KLMS [3], the first kernel-based adaptive filter presented
in the literature. As developed in [7], KLMS with the
Epanechnikov kernel is identical to the KMC-EPA and for
this reason, KLMS is only considered with the Gaussian
kernel. We also considered its sliding window version,
KLMS-GAUSW and its DD version, KLMS-GAUDD. The
parameters were chosen considering the best performance
varying σ in [0.1,5] and µ in [0.001,0.9]. The performance
will be evaluated by measuring the Mean Square Error
(MSE).

A. Sliding Window Simulations
First, we will use a linear scenario with a correlated

transmitted signal, which consists of a Binary Phase Shift
Keying (BPSK) signal filtered by F(z) = 1+0.5z−1, giving
sn, and distorted by the channel H(z)= 0.2+1z−1+0.4z−2

accompanied by impulsive noise [8], whose probability
density function is described by the following equation [7]:

pnoise = 0.9N (0,σ1)+0.1N (0,σ2), (12)

with σ2 = 0.8 and σ1 adjusted to obtain a resulting SNR
of 20 dB. As in [7], since H(z) is a nonminimum-phase
channel, the error is calculated with a 1-sample delay in
sn to improve the performance of the three algorithms.

In Fig. 2, we have the results of an average of 10000 sim-
ulations for the algorithms KMC-GAUSW, KMC-EPASW
and KLMS-GAUSW in the linear scenario. For KMC-
GAUSW the parameters used were µ= 0.9 and σ= 1; for
KMC-EPASW µ= 0.02 and σ= 0.5 and for KLMS-GAUSW,
µ = 0.9 and σ = 1. The three algorithms used window
size, Nw = 200. Analysing Fig. 2, it is possible to notice
that the three algorithms presented a singular behavior
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in which the convergence curves tend to oscillate in a
frequency equal to the window size. After a certain number
of samples, the amplitude of the oscillation decays, and the
algorithms converge. This behavior will be explored with
further details in the future. In general, the KMC-GAUSW
shows the best performance of all three algorithms in this
scenario. Despite the oscillation, the attaint MSE level is
similar to the one obtained in [7] for the same scenario,
which means that the algorithms do not lose performance
with the sliding windows approach. Furthermore, the
KMC-EPASW does not diverge and the algorithms present
a lower computational cost since the size of the resulting
RBF network is constant.

Fig. 2. Convergence curve in a linear channel with impulsive noise
using a correlated signal.

In Fig. 3, we present the MSE value after convergence
as a function of the window size, Nw. Results show an
average of 1000 simulations. The parameters used were
the same ones as Fig. 2. In this case, the MSE level
achieved by KMC-GAUSW and KLMS-GAUSW are stable
for Nw > 200. On the other hand, KMC-EPASW starts to
present instability for Nw > 900, diminishing its perfor-
mance. Thus, smaller window sizes should be chosen.

Fig. 3. MSE by the window size in a linear channel with impulsive
noise using a correlated signal.

For the nonlinear scenario, we will use a binary signal
sn, in order to compare with the result found in [7]. The
nonlinear channel model is defined by zn = sn +0.2sn−1,
xn = zn −0.9z2

n +νσ, where νσ is an additive white Gaus-
sian noise (AWGN) considering an SNR of 20 dB. It is
important to point out that, in this scenario, the error is

calculated without delay [7].
The results are shown in Fig. 4, considering an average

of 10000 simulations. For KMC-GAUSW the parameters
used were µ = 0.5 and σ = 2; for KMC-EPASW µ = 0.05
and σ = 1 and for KLMS-GAUSW, µ = 0.4 and σ = 2.
Nw = 200 for the three algorithms. We can note that KMC-
GAUSW and KLMS-GAUSW converge to the same MSE
level, whilst KMC-EPASW shows the best performance
among the three algorithms. In terms of MSE level, the
three algorithms had a similar result when compared to
the ones shown in [7].

Fig. 4. Convergence curve in a nonlinear channel with additive noise
using a binary signal.

Fig. 5 considers the MSE as a function of the window
size, Nw, for the nonlinear scenario. An average of 1000
simulations was considered. These results were obtained
using the same parameters as Fig. 4. We can note that by
varying the Nw the MSE threshold of the three algorithms
are stable for Nw > 300 approximately, even though KMC-
EPASW performs better since Nw = 80.

Fig. 5. MSE by the window size in a nonlinear channel with additive
noise using a binary signal.

B. Decision-Directed Mode Simulations

Using the same linear scenario with a correlated sn, we
simulated the KMC-GAUDD, KMC-EPADD and KLMS-
GAUDD. The results can be found in Fig. 6 and are an av-
erage of 10000 simulations. The training stage considered
200 samples for the three algorithms and the algorithm
changed to DD mode, the following parameters were used:
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for KMC-GAUDD were µ = 0.9 and σ = 2; for KMC-
EPADD, µ = 0.01 and σ = 0.5; and for KLMS-GAUDD,
µ= 0.7 and σ= 2. We also considered 500 training samples
for the KMC-EPADD in order to improve its performance,
using µ = 0.9 and σ = 3.1. Thus KMC-EPADD demands
more training to converge to a similar MSE threshold as
the other algorithms.

Fig. 6. Convergence curve in a linear channel with impulsive noise
using a correlated signal.

Employing the nonlinear scenario used for Fig. 4 and 5,
and a BPSK transmitted signal, the results are shown in
Fig. 7, considering an average of 10000 simulations. For
KMC-GAUDD the parameters used were µ= 0.9 and σ= 1;
for KMC-EPADD µ = 0.002 and σ = 0.9 and for KLMS-
GAUDD, µ= 0.7 and σ= 1. For training, 200 samples were
set and the rest for decision-directed mode. In Fig. 7, we
can notice that KMC-GAUDD and KLMS-GAUDD achieve
the same MSE threshold, and KMC-EPADD presents the
lowest MSE level even though it takes longer to converge.

Fig. 7. Convergence curve in a nonlinear channel with additive noise
using a BPSK signal.

VI. CONCLUSIONS

The Kernel Maximum Correntropy algorithm is an ef-
ficient and robust algorithm that deals particularly well
with impulsive noise and nonlinear channel equalization.
Its implementation with the Epanechnikov kernel im-
proved the algorithms performance in certain situations,
however, this new algorithm suffered from numerical in-
stability that led it to diverge after a certain number of
iterations. In this work, we proposed the use of sliding
windows to reduce the complexity of the KMC-EPA and

avoid its divergence. Simulations in linear and nonlin-
ear scenarios showed that the algorithms did not lose
performance in this new approach, with KMC-EPASW
performing better in the later. Another approach to deal
with numerical instability is the use of dictionaries [4],
which will be further studied in the future.

In addition, we proposed the use of a decision-directed
mode with the KAF filters enabling the adaptation in blind
mode after a training stage. The three algorithms were
first simulated using a correlated signal with a linear
channel and impulsive noise, achieving the same MSE
level. In a nonlinear scenario with additive white Gaussian
noise, the KMC-EPADD presented the best performance in
terms of the MSE threshold.
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