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DRL-Based Scheduling With Support to
Time-Varying Number of Active Users

Ingrid Nascimento, Silvia Lins and Aldebaro Klautau

Abstract— 5G use cases present current challenges that need
to be addressed, such as big data generation, a large variety
of services and devices. In this regard, Reinforcement learning
(RL) is an important new tool for Radio Resource Scheduling.
However, most works assume the number of users remains
constant over time, which does not hold in realistic mobile
network scenarios. In this work, a RL-based scheduler called
RL-TANUS is evaluated in scenarios with diverse user traffic
and a variable number of active users. Also, an analysis of the
performance of RL-TANUS regarding throughput maximization
is presented in comparison with scheduling baselines.

Keywords— 5G, radio resource management, resource schedul-
ing, reinforcement learning, deep learning.

I. INTRODUCTION

Fifth generation (5G) communications embrace a variety of
use cases such as unmanned vehicles, virtual reality, improved
manufacturing operations, among others, which impose sub-
stantial challenges to mobile networks. 5G applications are
often categorized as enhanced Mobile Broadband (eMBB),
Ultra-Reliable Low Latency Communications (URLLC), or
massive Machine-Type Communications (mMTC), demand-
ing more flexibility from the radio network to address the
strict requirements in a cost-efficient manner. 5G New Radio
(NR) standard improved radio flexibility by adding multi-
numerology structure with different sub-carrier spacing (SCS),
cyclic prefixes (CP), and symbol duration [1].

In addition, flexibility will be even more crucial with the
emergency of new heterogeneous networks in future, which
make Radio Resource Management (RRM) task more com-
plex. Authors in [2] say that these 5G use-cases scenarios pose
some challenges that RRM should handle for next wireless
communications: (1) Massive connections between people
and things will generate a huge demand over communication
resources. (2) Big amount of information that requires efficient
mining and big data exploitation in order to improve the design
of resource management algorithms and, (3) Large amount
of devices and services which impose stringent requirements
related to Quality of Experience (QoE) and Quality of Service
(QoS) which demand efficient RRM to provide appropriate
resource to the target applications.

Artificial Inteligence (AI) is an ally to address previous
mentioned challenges due to its capacity to improve resource
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efficiency, learn pattern from data and provide customized so-
lutions [2]. Some recent work has shown the high applicability
of Reinforcement Learning (RL) in the context of RRM, more
specifically, in the Radio Resource Scheduling (RRS) tasks
which is related to resource allocation among users, playing a
fundamental role in the mobile cellular networks.

Due to the importance of RRS, RL is frequently considered
to deal with scheduling tasks due to its self adaptivity to
changing scenarios since conventional schedulers are unable
to attend specific requirements of 5G applications considering
its fixed metrics that do not easily adapt to different chan-
nel conditions, network operator demands and non-stationary
traffic patterns [3].

Authors in [4] proposes a downlink scheduling framework
which selects scheduling rules dynamically taking in con-
sideration active users requirements and system conditions
for QoS maximization. In [5], DRL is applied for packet
scheduling and resource block allocation in the uplink service-
oriented mmWave RAN in which multiple users and services
are analyzed according to QoS requirements.

In order to add a fair evaluation of a RL-based scheduler,
realistic scenarios should be provided with changing number
of users during simulation under different traffic types, which
is not commonly encountered in the literature. Then, there is
a lack in the analysis of how a changing environment impacts
the scheduler performance and its adaptability in the context
of RRS tasks, which is under investigation in this work.

Our main contributions are related to (1) a scheduling RL-
based strategy comparison with other scheduling baselines in
efficiently allocate resources to users currently available in
the scenario. (2) Also, this work provides a deeper evaluation
of our Reinforcement Learning Time-varying Active Number
of Users Scheduler (RL-TANUS), regarding agent behavior
when different architectures for the RL-based scheduler are
defined to work (3) in a changing scenario, with altering
number of active users representing the mobility of users
entering and leaving the base station (BS) coverage area. For
the best of our knowledge, it is the first time that invalid
action masking technique is investigated in the context of
5G RRS tasks. (4) In addition, the evaluation of the RL-
TANUS scheduler is given considering different traffic patterns
generated by the framework proposed in [6] that impacts
environment dynamics.

II. SYSTEM MODEL AND PROBLEM STATEMENT

A. System description

We consider a downlink transmission with bandwidth of
100 MHz and using a carrier frequency f. = 60 GHz, in
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which the total number of possible users is represented by N
= {n1,n2,...,nn}, and the BS serves a set of active users
denoted by U = {u|u € N} of size U. The active users set
size varies and it characterizes users entering and leaving the
BS coverage area during the simulation execution generating
a dynamic scenario.

The MIMO system is assumed as an analog architecture
where, at the BS, there is a Uniform Planar Array (UPA)
with N; antenna elements, and each receiver uses an UPA
with NV, antennas. Therefore, between the BS and a user, the
MIMO channel is represented by an H matrix of IV, X Ny.
The codebooks are obtained from Discrete Fourier Transform
(DFT) matrices and described by C; = {wy,--- ,Wx,} and
C. = {fi,---,fn,}, being used at the transmitter and the
receiver sides, respectively.

Regarding the beam selection modeling, [p,q] is used to
represent the chosen beam pair by a unique index i €
{1,2,---, M}, where M < N;N,.. More detailed information
about the communication system used can be found in [6].

The RL-TANUS scheduler aims to choose from the set
of active users (U), the User Equipment (UE) for packet
transmission at each transmission time interval (TTI) ¢. There
are three types of distinct users available in the set A/, which
are a UAV, a CAR and pedestrians. The type of user from
the set U determines the amount of data will be available
for transmission, enabling in this way the differentiation of
applications.

In addition, there are two different network load scenarios
representing a heavy and light network traffic alternating
among them in each 1000 steps. The heavy traffic represents
a total throughput of 12 Gbps and light traffic is half of this
value. Each user presents heavy and light traffic behavior.
Also, users data traffic are defined as a Poisson processes with
time-varying mean A, [t] for a user u € U, more details about
traffic generation can be found at [6].

The RL-TANUS would be able to deal with this constantly
changing scenario in order to minimize packet loss and im-
prove fair access of all users to resources.

B. Problem Statement

Our main objective is to find a policy that effectively
schedules a user v € U from a varying active users scenario
such that maximize throughput and minimize packet loss for
each scheduling period (TTI).

In our approach, all UEs have the same priority and must
have data in the buffer to be transmitted. Only the selected
UE can transmit and other active users have packets dropped
or buffered. None previous selection stage of users is applied
in order to explore adaptability of RL-TANUS scheduler in
complex scenarios.

In a varying eligible users scenario, the main challenge is to
provide consistent feature states as input to neural networks to
indicate environment dynamics. Also, another constraint to be
considered is the fixed input and output architecture of neural
networks in the current ML implementation tools.

To deal with this complex problem, the RL-TANUS applies
the invalid action masking approach to suitably learn a model

able to select the appropriate user in order to maximize
throughput with fair distribution of resources among active
users in the scenario. The next section will highlight the details
of the RL model design applied in the problem.

III. RL-TANUS MODEL

Figure 1 shows a generic scheme of the RL-TANUS sched-
uler and how it interacts with the radio environment. The
problem is modeled as a Markov Decision Process (MDP)
which consists of the following elements.

A. State space

The state space is composed by discrete values (from 0 to
2) that represents how many packets were transmitted F;_,
discarded P or buffered P, for each active UE in each TTI
t. These discrete numbers are defined according to a range of
values that previous variables can assume. Also, the current
choice of the RL-TANUS is added to the state space that will
describe the environment dynamics. In general, the state space
size will be of 14 U3 which 1 represents the action taken by
the scheduler.

B. Action space

At each TTI t, the RL-TANUS selects one user u from U
set. In this regard, up to M users can be present in the scenario
per TTL

C. Reward

One of the metrics to evaluate the RL-TANUS is consider
data that actually was transmitted by the scheduled user. The
reward r at TTI ¢ is the weighted sum of transmitted packages
and discarded packages given by

P 1) + 2Py
T = ———————. (1)
(t] Pb[t]
where P ), Pap;) and Py corresponds, respectively, to
transmitted, dropped and buffered packets of active users in
the scenario at TTI ¢. In addition, penalties are applied when
the RL scheduler selects same user consecutively.

Transmitted packets
Dropped packets
Buffered packets

Scheduler
runs at the
base station

Fig. 1. Overview of the RL-TANUS. The environment can be under different
traffic type.
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IV. RL-TANUS ARCHITECTURES

This section presents the RL-TANUS that is an actor-critic
algorithm composed by two neural networks, one operates as
critic which estimates the value function associated to each
state encountered by the agent, and the another network is the
actor or policy network, which updates the policy distribution
in the direction suggested by the critic.

A. RL-TANUS-sorted-mask

In RL-TANUS-sorted-mask architecture we investigate the
application of the invalid action masking technique in the
context of RRS problem. The invalid action masking is usually
applicable in games or contexts in which the discrete action
space of different states usually have different sizes [7]. In
our problem, M users compose the full discrete action space,
however only a subset of this set, at each TTI, represents valid
actions to be sampled by the scheduler.

In a policy gradient network, to differentiate valid actions,
which represents active users in a given state, from the invalid
ones, a mask is applied to "masking out" the logits of invalid
actions. In this case, the logits of invalid actions are replaced
by a large negative number, then when these values are
submitted to a softmax layer to calculate a re-normalized
probability distribution z, the resulting probability of choosing
an inactive user will be virtually zero [7].

In addition, different arrangements of the state space will
be tested in RL-TANUS architecture. In the sorted-mask
architecture, the information of active users will be sorted and
will be grouped in the top of neural network entry, as shown
in Figure 2.
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Fig. 2. RL-TANUS with sorted-mask architecture.

B. RL-TANUS-fixed-mask

In the RL-TANUS fixed-mask architecture is applied the
same invalid action masking approach previously explained,
then information of active users are placed in specific positions
in the entry of the scheduler neural network, as shown in
Figure 3.

The purpose of trying different types of architectures is
the analysis of scheduler behavior for distinct configurations,
testing if its learning efficiency and complexity is affected or
improved.
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Fig. 3. RL-TANUS with fixed-mask architecture.

V. EXPERIMENTAL RESULTS

In this section will be given some details about configu-
rations of the agent scheduler and about training and testing
process.

The data used in the training process is generated according
to the framework described in [6]. A set of files containing the
spatial information (position, orientation, acceleration, etc) of
all moving objects (UAV, CAR and pedestrians) is used in
the computation of the radio channels and parameters related
to the telecommunication system, such as buffer size, etc as
detailed in [6]. According to the amount of training episodes,
the set of active users is determined in the beginning of the
simulation for each TTI. In the test phase, a set of episodes
not used during the training phase is applied to the agent for
its performance evaluation.

A. Simulation settings

The RL-TANUS is composed by 2 critic network layers of
32 neurons each, as well as the actor network, composed by 2
layers of 32 neurons. The learning rate was set to 0.001 and
ReLU activation function was applied. Different values for the
number of steps to run in the environment per update, defined
as TNsiep, impacted the results being considered ngpe, = 25
and n¢ep = 30 for sorted-mask and fixed-mask architecture,
respectively.

For the experiments, we considered two additional sched-
ulers, the B-Round Robin scheduler (B-RR) that chooses the
user according to a sequential pattern (1-2-3-1-2-3,...), and the
B-Random scheduler that selects a user randomly from the set
of U active users. The simulation scenario presents M = 5
possible users.

For both architectures, 200 episodes were used in the
training phase and the scheduler performance was tested for
more than 100 thousand time steps. Figure 4 presents the
accumulated rewards for the test dataset for RL-TANUS fixed-
mask in comparison with baseline schedulers.

The results presented in Figure 4 can be further analyzed
considering the maximum throughput achieved by the RL-
TANUS fixed-mask in comparison with baselines, as can be
seen in Figure 5. In this case, we can see that agent efficiently
allocates users present in scenario in order to maximize
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Fig. 4. RL-TANUS fixed-mask - cumulative rewards per time steps.

throughput. This result is directly related to a lower packet
loss rate in all test episodes as shown in Figure 6.
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Fig. 5. RL-TANUS fixed-mask - Maximum throughput.
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Fig. 6. RL-TANUS fixed-mask - Packet loss rate.

The performance of RL-TANUS sorted-mask architecture

can be seen in Figure 7. Besides accumulated rewards, the
agent achieved similar maximum throughput values to base-
lines as shown in Figure 8. Despite of better throughput
achieved by RR baseline, it presents a higher packet loss rate
in comparison to the agent as can be seen in Figure 9, which
demonstrates that RL-TANUS sorted-mask presents greater
goodput values.
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Fig. 7. RL-TANUS sorted-mask (that reaches the same results of the B-RR
Scheduler) - Cumulative rewards per time steps.
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Fig. 8. RL-TANUS sorted-mask - Maximum throughput.

An additional analysis can be done regarding accumulated
reward for both architectures. In Figure 10 can be seen that
fixed-mask architecture presents a superior performance in all
test episodes.

Its preeminence in relation to the sorted-mask architecture
is demonstrated when throughput and packet loss values are
analyzed in terms of users present in scenario during test
phase. In Figure 11 we can see that fixed-mask achieved higher
throughput values for UAV, as it presents bigger traffic than
other users, and lower packet loss rate in comparison to the
sorted-mask shown in Figure 12.
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Fig. 9. RL-TANUS sorted-mask - Packet loss. Fig. 12.  Sorted-mask: Throughput and packet loss per users.

varies during the simulation presenting more realistic scenar-
mEm RLTANUS sorted-mask ios. Deeper analysis regarding some key performance indica-
BN RL-TANUS fixed-mask . . . . .
tors in the evaluated scenario were provided in order to bring
useful insights about RL agent behavior. The experiments
have shown that different definitions of RL-based scheduler

™ architecture have significant impact in the agent performance,
500 1 being the first time that invalid action masking technique is
250 J applied in the context of 5G RRS problem.
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VI. CONCLUSIONS

In this work we introduced RL-TANUS scheduler, in the
context of RRS tasks, in which the number of active users



