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Abstract— Distributed massive multiple-input multiple-output
(MIMO) networks, also known as cell-free, are promising solution
to increase efficiency in beyond 5G systems. Pilot-based uplink
(UL) channel estimation directly influences transmission effi-
ciency, as it is used to mitigate interference and noise from user
equipment (UEs). In this context, this work uses genetic algorithm
(GA) as a tool to optimize pilot allocation and assignment and
maximize spectral efficiency (SE). First, we define the optimal
amount of samples allocated to channel estimation that balances
accuracy and overhead. Generally, this lead to fewer pilots than
UEs. Therefore, the pilot assignment is also optimized to decrease
interference between UEs reusing the same pilot. The results show
that the optimal number of pilots presents a similar behavior
when the number of UEs increases. The average SE is improved
when GA is used to optimize pilot assignment compared with
the baseline solution.

Keywords— Cell-free massive MIMO, channel estimation, ge-
netic algorithm, pilot allocation and assignment.

I. INTRODUCTION

User-centric (UC) distributed massive multiple-input
multiple-output (D-mMIMO) system, also known as cell-
free (CF), is considered a key solution for increasing the
transmission efficiency of fifth-generation (5G) and beyond
wireless networks. The system consists of a large number
of radio units (RUs) distributed in the coverage area to
serve the user equipments (UEs). The system can overcome
the main disadvantages of cellular systems by increasing
macro-diversity and providing uniform spectral efficiency
(SE) [1], [2].

The canonical cell-free (CCF) version assumes that all RUs
serve all UEs. However, this strategy is not scalable as it
requires enormous resource requirements from the network. In
this sense, the scalable cell-free (SCF) approach emerged as
an alternative to solve these disadvantages. The RU selection
process limits the number of UE that each RU can serve to
achieve a scalable system [1]–[3].

In D-mMIMO, pilots are used to estimate the communi-
cation channel between RUs and UEs only once due to the
channel response being constant in the coherence block. The
uplink (UL) channel estimation will serve to downlink (DL)
by applying the principle of reciprocity. Then, the channel is
estimated in the UL direction to perform data combination
and precoding. The length of the pilot sequences affects the
channel estimation quality and the overhead, influencing the
system’s SE performance [1], [4].
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Due to the limited resource for pilots, there is a need to
reuse them if the number of UEs is greater than the number of
orthogonal pilot sequences. The UEs that share the same pilot
suffer from the effect of "pilot interference" or pilot contam-
ination. This interference reduces the estimation quality and
causes the channel estimations of the UEs that share the pilot
to be correlated [5]. This has a critical impact beyond channel
estimation, as pilot contamination makes it difficult to mitigate
interference between UEs that use the same pilot in the UL
and DL directions [6], [7]. Therefore, properly determining
which pilot sequences are assigned to UEs can improve the
transmission capacity, reduce interference between UEs and
increase performance.

In this work, genetic algorithm (GA) optimization is used as
a tool to find the pilot allocation and assignment that presents
the best SE performance. By optimizing these two parameters,
we can obtain better channel estimates and interference sup-
pression, in addition to balancing the impact of the estimation
overhead on SE. The results obtained with GA optimization
is compared with baseline solutions in [1].

II. SYSTEM MODEL

A. Channel Model
We consider a D-mMIMO system consisting of L RUs,

each equipped with N antennas, serving K UEs. The RUs
are connected to the central processing units (CPUs) through
fronthaul links. In this scenario, the channel vector hkl ∈
CN×1 between RU l and UE k is modeled as an independent
Rician channel, being defined as [8]

hkl =

√
κkl

1 + κkl
hLOS
kl +

√
1

1 + κkl
hNLOS
kl , (1)

where the first term corresponds to the deterministic compo-
nent line-of-sight (LOS) and the second term is the random
propagation component non-line-of-sight (NLOS). The Rician
factor κkl represents the power ratio between the components
LOS and NLOS, defined as κkl = pLOS/(1− pLOS), where
pLOS is the probability that the LOS component exists, but is
zero for propagation links that are just NLOS [9]. The LOS
component between the RU l and UE k can be written as

hLOS
kl =

√
βkl

[
1, e−jπ sin(φkl), · · · , e−j(N−1)π sin(φkl)

]T
ejθkl , (2)

where φkl is the angle-of-arrival (AoA) and βkl is the large-
scale fading gain, including path loss and shadowing. Besides,
the term θkl ∼ U [0, 2π) denotes the random phase shifts that
may occur due to UEs’ mobility.

The multipath NLOS component, undergoes a correlated
Rayleigh distribution, given by

hNLOS
kl =

√
Rkl gkl, (3)
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where gkl ∈ CN×1 is composed of elements that are com-
plex independent and identically distributed (i.i.d.) Gaussian
NC (0, 1) random variables (RVs). The correlation matrix Rkl

is calculated following the Gaussian spatial correlation model
of local scattering presented in [1], with βkl = tr{Rkl}/N
being the common large-scale gain.

B. UL Training

Knowledge of the channel from the UEs to the serving RUs
is required to transmit the signals coherently. The channel esti-
mation is performed only once for each coherence block, as the
channels are considered constant throughout a coherence block
and change independently from one block to another. During
UL training, the UE transmits training signals, known as pilot
training sequences, to the RUs. In each coherence block, τp
samples are reserved for channel estimation, generating a set
of τp pilot sequences. These training sequences are designed
to be orthogonal to each other and have known properties,
which allows channel estimation by the RUs, which satisfy

ϕH
t1ϕt2 =

{√
τp, if t1 = t2

0, if t1 ̸= t2.
(4)

If the number of UEs is greater than the number of pilots
τp, the same sequence can be reused between them [7]. The
pilot sequence of UE k is denoted by ϕtk

∈ Cτp×1, tk ∈
{1, · · · , τp}, and the signal received by RU l is given by

ypilot
l =

K∑
k=1

√
ηkhklϕtk

+ nl, (5)

where ηk is the pilot transmit power, nl ∼ NC(0τp , σ
2
ulIτp) is

an additive noise. RU l calculates an inner product between
ypilot
l and ϕtk

to get enough statistics for the estimate of hkl.
Then, the specific pilot signal of UE k can be expressed as

ypilot
tkl

= ϕH
tk
ypilot
l =

∑
i∈Pk

√
τpηihil + ntkl, (6)

where Pk ⊂ {1, . . . ,K} is the set of UEs that use the same
pilot as UE k, and ntkl ∼ NC

(
0N, σ2

ulIN
)

is the additive
noise. Hence, we can derive the non-Bayesian least-square

(LS) estimator that minimizes
∣∣∣∣∣∣ypilot

tkl
−√

pkτphkl

∣∣∣∣∣∣2 , as

ĥkl =
1

√
ηkτp

ypilot
tkl

. (7)

The LS estimator is useful when statistics are unknown or
unreliable, as it does not need statistical information [4].

C. DL Data Precoding

Precoding is the processing that RUs or CPUs use channel
estimates to compensate for channel effects and mitigate
interference to improve the quality and speed of DL data
transmission. For comparison purposes, this work considers
the following distributed and centralized scalable precoding
schemes: maximum ratio (MR), local partial minimum mean
square error (LP-MMSE), partial minimum mean square error
(P-MMSE), and partial regularized zero-forcing (P-RZF).

One can define the distributed MR combining vector as

vMR
kl = ĥkl, (8)

which has low complexity and maximizes the ratio
|vH

klĥkl|2/||vkl||2 between the power of the desired signal
and the squared norm of the combining vector. This approach
ensures that all the received energy from the desired signal
is coherently combined, as the combining vector is weighted
according to the desired end-UE’s channel response. Using the
principle of duality, combining vectors in the UL are converted
to precoding in the DL using

wkl =
√
ρkl

vkl√
E
{
vH
klDklvkl

} , (9)

where ρkl is the transmission power of the DL and the
connections between the UE k and RUs by defining Dkl = IN
if RU l serves UE k, zero otherwise.

The LP-MMSE is a distributed method that minimizes the
mean square error at the receiver. On the other hand, P-RZF is
a centralized method that minimizes interference between the
transmitted signals. In turn, P-MMSE is the centralized version
of LP-MMSE. These methods are generally more robust than
MR but require higher computational complexity [10].

D. DL Spectral Efficiency

SE quantifies the amount of information transmitted in a
wireless communication system related to the used bandwidth.
The typical unit for measuring SE is bits per second per hertz
(bits/sec/Hz). The DL SE of UE k can be calculated as in [2]

SEk =
τc − τp

τc
log2 (1 + SINRk) , (10)

where (τc− τp)/τc is the pre-log factor, which is a fraction of
samples per coherence block that is used to transmit the DL
data and the term SINRk is the signal-to-interference-plus-
noise ratio (SINR), given by

SINRk =

∣∣E{
hH
k Dkwk

}∣∣2
K∑
i=1

E
{
|hH

k Diwi|2
}
− |E {hH

k Dkwk}|2 + σ2
dl

, (11)

where wk ∈ CM×1 and hk ∈ CM×1 are, respectively,
the collective vectors of wkl and hkl. For instance, wk =[
wT

k1, ...,w
T
kL

]T
for l ∈ {1, · · · , L}. Moreover, Dk =

diag (Dk1, ...,DkL) ∈ NM×M stands for the diagonal block
matrix. Note that (10) represents the widely known hardening
bound, which is a capacity lower bound valid for any choice
of precoding vectors [1].

III. OPTIMAL PILOT ALLOCATION AND ATTRIBUTION FOR
MAXIMIZATION OF SPECTRAL EFFICIENCY

This work uses GA to define the allocation and assignment
of pilots to maximize SE. Pilot allocation refers to the number
of coherence block samples for pilots (τp) that will be used
for channel estimation. Pilot assignment defines which pilot
will be used by each UE (tk), which also implies determining
which UEs should use the same pilot.
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GA operates on a population of individuals representing
potential solutions, where solutions are encoded as chromo-
somes. The process involves assessing the aptitude of each
individual to select the fittest individuals, using resources
such as crossing and mutation to generate offspring, and
repeating these steps over several generations. The population
is expected to evolve and approach optimal solutions. GA is
a powerful and relevant tool for solving complex optimization
problems, as with each new generation there is a tendency
towards better results [11]. Thus, GA is a potential candidate
to optimize the number of pilots and the pilot assignment in
D-mMIMOs networks.

A. Pilot Allocation Optimization

In an ideal scenario, each UE would have its own pilot,
but since the coherence block is limited, the division between
pilots and information makes this approach unfeasible. Even
though this scenario leads to less interference and better
channel estimation, the estimation overhead reduces the pre-
log factor. Thus, the main disadvantage of UL pilot-based
estimation is still the need to use samples of additional
resources in pilot training, requiring a small number of pilot
sequences to keep the overhead low and, consequently, its
reuse between the UE. Reusing pilots causes coherent inter-
ference and decreases the quality of the channel estimation.
Reducing pilot reuse (increasing τp) does not improve the
average SE, as the estimation overhead decreases the pre-
log factor, even though there is less coherent interference
and better channel estimation. It is essential to find a proper
balance between the overhead and reliable performance. To
this end, the optimization problem is formulated as

maximize
τp

K∑
k=1

1

K
SEk(τp) (12a)

subject to τp ∈ {1, 2, · · · ,min{fτc,K}}, (12b)

where the objective is to maximize the average SE by finding
the optimal value for τp in (12a) [7]. Since the resources
are limited, GA is used to find the optimum by applying
restrictions to the equation (12b), which accounts for the fact
that τp is at most equal to the number of UE, but it cannot
occupy the entire coherence block, being limited to f% of
τc. The optimization is needed since the best τp is not easily
derived from the SE in (10) and is also conflicting. When the
value of τp increases, the value inside the logarithm in (10)
also increases. This happens because a higher τp improves
the channel estimation in (7), consequently improving the
precoding vectors computation and the SINR. On the other
hand, an increase in τp decreases the SE pre-log factor in (10).
Thus, the maximum pre-log value occurs when τp is reduced
to zero. However, this is not feasible since at least one pilot
is required to perform pilot-based channel estimation [1], [7].

B. Pilot Assignment Optimization

In D-mMIMO, there is an issue of pilot contamination when
multiple UEs share the same pilot resource to estimate the
channels. Pilot contamination can lead to channel estimation

errors, signal quality degradation, and system capacity lim-
itations. For accurate channel estimation and efficient data
transmission, choosing which UEs will need to use the same
pilot to achieve the best system performance is crucial [6]. The
proper choice of pilot indices can significantly impact system
performance, and finding a simple solution to the problem is
challenging due to the enormous number of combinations. To
demonstrate the number of possibilities in the pilot assign-
ment, one can use the formula for permutation with repetition
PR(n, r) = nr for n >= 0 e r >= 0. Using it in this context,
we conclude that the total number of possibilities equals τKp .
Then, the pilot assignment problem is formulated as

maximize
tk

K∑
k=1

1

K
SEk(tk) (13a)

subject to tk ∈ {1, 2, · · · , τp},∀k ∈ {1, ...,K}, (13b)

where the GA is used as a tool to determine which pilot index
tk is assigned to each UE, finding the optimal sequence of pilot
indices that satisfies (13a). The constraint (13b) are applied
to ensure that each pilot index is less than the total number
of pilots τp and that all UEs receive a pilot. To reduce the
complexity of the problem, we can consider that the firsts
UEs will receive an orthogonal pilot. When the number of
UEs exceeds the number of pilots, the GA will determine the
optimal pilot indices for the remaining UEs. In this case, the
number of possibilities is given by τ

K−τp
p [7].

IV. NUMERICAL RESULTS

The propagation model adopted in this work follows 3GPP
TR 38.901, considering urban micro (UMi) for external envi-
ronments. The carrier frequency is 3.5 GHz and the bandwidth
is 100 MHz. The noise figure is 8 dB, using coherence interval
equal to 200 to simulate a high speed scenario [12], and
other simulation parameters are given in Table I. The GA is
performed using the MATLAB optimization toolbox. It is used
10 individuals and 10 generations for the pilot allocation op-
timization, while 40 individuals and 200 generations are used
for pilot assignment optimization. For both scenarios, elitism is
defined using 2 individuals, selection and crossover are based
on the tournament and scattered methods, respectively.

TABLE I: Simulation parameters.
PARAMETER VALUE
Numbers of antennas 2
Power of UL per UE 22 dBm
UE height, RU height 1.65 m, 11.65 m
RU total DL power 23 dBm

The channel between RUs and UEs is considered in the
process of selecting RUs and determining which pilots will be
assigned to which UE. The SCF method serves the UEs by a
subset of RUs selected based on the best large-scale channel
gains in each pilot. After that, the number of RUs connected
to each UE is limited by Cmax = 10 [5], [12]. The baseline
pilot assignment, the first τp UEs are assigned to mutually
orthogonal pilots, and the remaining UEs are assigned to the
pilot that causes the lowest pilot contamination [1]. Both UEs
and RUs are uniformly distributed into the coverage area.
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A. Pilot Allocation

In this section, it is considered f = 0.6 and L = 200 RUs,
and a coverage area of 500m×500m. Fig. 1 shows the system
performance in terms of average SE with K = 50 UEs, are
uniformly distributed, for different precoding schemes. The
P-MMSE precoding performs better for τp lower than 12.
After that, its performance decreases. For the P-RZF, despite
initially reaching lower SE, it surpasses the P-MMSE after
τp = 21. It can be noticed that the centralized precoding
schemes benefit more from using higher τp values than the
distributed ones. This happens because centralized schemes
can better mitigate interference, which needs good channel
estimates to be achieved. The LP-MMSE and MR precoding
have similar behavior, requiring a small number of pilots to
maximize their SE. The LP-MMSE presents 20.5% higher SE
than MR at the cost of greater computational complexity [1].
In all cases, the best SE when τp is in less than half of K UEs.
Although the greater number of pilots the better the channel
estimates and interference mitigation, the results show that this
does not lead to the best SE due to the impact of the estimation
overhead in the SE’s pre-log factor.
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Fig. 1: Average DL SE vs. τp in SCF for different precoding
schemes. Parameters setting: L = 200, N = 2 and K = 50 in
a coverage area of 500m× 500m.
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Fig. 2: Average DL SE vs. τp in the MR precoding varying
K. Parameters setting: L = 200 and N = 2 in a coverage
area of 500m× 500m.

Fig. 2 evaluates the average SE vs. the number of pilots τp
for different numbers of UEs K, considering MR precoding. It

can be noticed that the search space differs when the number
of UEs changes. This happens because the maximum value
that τp can assume corresponds to K for K = 50 and K =
100, while for larger values of K, τp is limited to fτc =
120. It is observed that the smaller the number of UEs, the
greater the SE due to less interference, and even when K
is small, it is not advantageous to have a pilot for each UE
due to the estimation overhead impact on the SE’s pre-log
factor. The optimal number of pilots changes by varying the
number of UEs. It can be noticed that the optimal number of
pilots is approximately 10% of the number of UEs the greater
the number of UEs, to ensure the balance between accuracy
and estimation overhead. Such behavior also occurs in other
precoders, such as LP-MMSE and P-MMSE, but the results
have been omitted to avoid redundancy.

B. Pilot Assignment

In this section, it is assumed τp = 4, L = 80 RUs and
K = 8 UEs in an area of 100m × 100m to reduce the
complexity of the optimization problem. Results are shown
for MR and P-MMSE precoding schemes and for CCF and
SCF RU selection. Fig. 3 compares the pilot assignment
with and without GA, where each color represents a pilot.
For CCF, the two precoders have the same pilot assignment
distribution when using GA optimization. Like in the baseline
method without GA, three UEs are assigned to the same pilot,
increasing their interference. In both precoding schemes for
SCF, each pilot is used by two UEs when GA optimization
is performed, showing that the pilot assignment distribution
is more balanced than the baseline method without GA,
which potentially leads to less interference between UEs and
improving channel estimation.
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Fig. 3: Pilot assignment distribution in SCF and CCF, with
and without GA. Parameters setting: L = 80, N = 2 and
K = 8 in a coverage area of 100m× 100m.

Figs. 4 and 5 show the SE of each UE in the same scenario
presented in Fig. 3, for MR and P-MMSE precoding schemes.
In Fig. 4, the average SE for both SCF and CCF are higher
using GA, even though the UEs specific SE is not always
better with GA. It can also be noticed that the average SE
for SCF is better than for CCF. For P-MMSE precoding using
SCF in Fig. 5a, the SE of the UEs are very uniform, unlike for
CCF in Fig. 5b. Despite that, GA pilot assignment optimization
improves the average SE significantly for CCF. The results in
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Figs. 4 and 5 demonstrate that the pilot assignment problem
is highly influenced by the RU selection method.
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Fig. 4: UEs’ SE with SCF and CCF in MR precoding with and
without GA. Parameters setting: L = 80, N = 2 and K = 8
in a coverage area of 100m× 100m.

V. CONCLUSIONS

This work has showed that the optimization of pilot al-
location and assignment plays a crucial role in maximizing
the SE of distributed massive MIMO networks. The results
indicate that using GA, it was possible to find the optimal
number of pilots that results in better system performance in
terms of SE, being able to balance the accuracy and chan-
nel estimation overhead. Furthermore, the results show that
utilizing distributed precoding requires fewer pilots to reach
its maximum SE than centralized precoders. For the chosen
simulation scenario, the results obtained by GA show that the
optimal number of τp is approximately 10% of the total of
UEs, when the number of UEs is high. However, other factors
may influence this behavior, such as the size of the coverage
area. Regarding the optimization of the pilot assignment, it is
noted that the performance using GA increases in all cases,
but is highly influenced by the RU selection scheme. As GA
demands high computational complexity, it may be difficult
to implement this solution in practical systems. Thus, the
main findings of this work can be used to derive heuristic
algorithms, since the baseline solutions are still not near the
optimal. Future works also include the joint optimization
of RU selection and pilot assignment, and the performance
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Fig. 5: UEs’ SE with SCF and CCF in P-MMSE precoding
with and without GA. Parameters setting: L = 80, N = 2 and
K = 8 in a coverage area of 100m× 100m.

evaluation with linear minimum mean square error (MMSE)
channel estimator instead of LS.
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