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Abstract— In this work, a new combined feature is proposed to
improve the recognition of non-stationary acoustic sources. The
idea is to overcome the non-stationarity problem on classification
tasks due to mismatches that arise from natural statistics varia-
tions. The Index of Non-Stationarity (INS) is adopted to assess
the non-stationarity behavior of acoustic signals on a frame-by-
frame basis, generating a new feature vector. The evaluation is
performed with the combined MFCC+INS feature. Eight sources
with different degrees of non-stationarity are selected for the
acoustic source classification task. Experiments demonstrated
that the proposed solution outperforms the baseline systems for
the majority of individual acoustic sources, leading to significant
increment in the average accuracy in all scenarios. Moreover, a
single INS feature value is sufficient to obtain up to 2.7 percentage
points gain on the average classification accuracy when compared
to the baseline approach.

Keywords— non-stationary assessment, acoustic features,
acoustic sources, multi-class classification

I. INTRODUCTION

Non-stationarity is a natural property observed on acoustic
signals [1] [2]. This varying temporal and frequency statistics
over time impose a significant challenge on classification
systems, specially when there are limited number of training
samples available [3]–[6]. The correct recognition of acoustic
sources in this demanding scenario is beneficial to a variety
of purposes such as hearing aid devices [7], robot navigation,
smart homes, surveillance systems and applications on the
Internet of Audio Things (IoAuT) [8].

Urban environments are commonly rich in acoustic events,
which can be broadly divided into scenes and/or sources.
Acoustic scenes are usually composed of several sources
(Dog Bark, Street Music and Siren) and acoustic effects (i.e.
echo and reverberation). This is fundamentally distinct from
recognizing individual non-stationary acoustic sources. The
mixture of signals and effects mitigate the non-stationarity of
target source, which are essentially non-stationary. Therefore,
tackling the natural non-stationary behavior is crucial to im-
prove acoustic source classification.

In this work, the Index of Non-Stationarity (INS) [9] is
proposed as a complementary feature to improve individual
non-stationary acoustic source recognition. It is known that
different acoustic sources present distinct degrees of non-
stationarity [4] [5] [10]. The idea is to incorporate the non-
stationary pattern, intrinsic to every source, as an acous-
tic feature for classification systems. This solution would
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overcome the statistical differences that arise from the non-
stationary behavior by incorporating this information into a
feature vector. To this end, the INS is extracted on a frame-
by-frame basis and used to generate the new composed feature
(MFCC+INS), where MFCC stands for the classical Mel-
Frequency Cepstral Coefficients.

Several experiments are conducted to validate the proposed
solution on multi-class classification. Scenarios are separated
for varying signal duration from 1 up to 4 seconds. A total
of eight acoustic sources with different non-stationary degrees
are selected from the UrbanSound [11] database. The proposed
approach is compared to a baseline solution wihout INS
feature vector considering a classical SVM classifier. A single
INS feature value is able to increase the average classification
accuracy up to 2.7 p.p. (percentage points). Moreover, the
proposed strategy surpass the baseline for the majority of
individual non-stationary acoustic sources with a 10.1 p.p.
maximum accuracy increase.

The contributions of this work can be summarized as:

1) Design of a new composed feature (MFCC+INS) for
non-stationary acoustic source recognition.

2) Evaluation of the proposed strategy on four multi-class
classification tasks.

The remaining of this paper is organized as follows. In
Section II it is presented the INS measure and the overall
scheme for the proposed combined solution. Experiments are
described at Section III followed by results and discussions.
Finally, the conclusion is exposed at the end of this paper.

II. NON-STATIONARY ASSESSMENT FOR ACOUSTIC
SOURCE CLASSIFICATION

A main target for acoustic source classification systems is to
find relevant and discriminative representations of each class.
Meaningful features are essential to correctly identify sources
and avoid misclassification. This can be particularly difficult
for acoustic sources due to their non-stationary behavior, i.e.,
temporal and spectral variations throughout time.

The Index of Non-Stationarity (INS) [9] is here defined
to objectively assess the non-stationarity of acoustic sources.
Consider a target signal x(t) and its multitaper spectral rep-
resentation Sx(l, f) as

Sx(l, f) =
1

K

K∑
k=1

S(hk)
x (l, f), (1)

where l is the frame, f is the frequency bin and S
(hk)
x (l, f)

is the spectrogram obtained for the k-th Hermitian function
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Fig. 1. (a) Spectrogram and Index of Non-Stationarity (INS) for sample Drilling source from UrbanSound. (b) Scheme of proposed combined feature
MFCC+INS. For every MFCC frame, a corresponding INS vector is extracted as a direct assessment of the non-stationary behavior.

hk(t) as the taper [12]:

S(hk)
x (l, f) =

∣∣∣∣∫ x(s)hk(s− l)e−j2πfsds

∣∣∣∣2 (2)

for
hk(t) = e−t2/2Hk(t)/

√
π1/22kk!, (3)

where Hk(t) are Hermite polynomials that are obtained by
recursion as

Hk(t) = 2tHk−1(t)− 2(k − 2)Hk−2(t), (4)

for k ≥ 2 and initializations of H0(t) = 1 and H1(t) = 2t.
The INS is a measure that compares the target signal with

stationary references called surrogates, adopting the symmet-
ric Kullback-Leibler distance and log-spectral deviation [13].
Surrogate signals are generated by changing the phase of the
spectral representation of x(t) to realizations of a uniform
distribution U [−π, π], which then guarantees their stationary
behavior [9].

The comparison is carried out for different time scales
Th/T , where Th is the short-time spectral analysis length
and T is the total signal duration. For each length Th, a
threshold γ ≈ 1 is defined to keep the stationarity assumption
considering a 95% confidence degree as

INS
{
≤ γ, signal is stationary
> γ, signal is non-stationary. (5)

For the INS assessment, a Python implementation1 was
adopted. Fig. 1 (a) depicts the spectrogram and the correspond-
ing INS for the Drilling acoustic source extracted from the
UrbanSound database [11]. The maximum INS value (green) is
superior to the non-stationary threshold γ (red), which means
that this source is non-stationary. Note that the degrees of
non-stationarity is completely dependant of the observed Th/T
scales. Overall, non-stationarity is better assessed on smaller
values of Th/T . On the other hand, as the scale increases
and approaches 0.5, acoustic sources present a decaying non-
stationary degree, as illustrated in the current example.

Multi-class classification of non-stationary acoustic sources
can be a demanding task, specially due to varying time and

1Available at https://github.com/g-zucatelli/pyINS .

frequency statistics. In addition to the non-stationarity, each
class is composed of a variety of acoustic founts, which
challenges the definition of a straightforward classification
strategy. This corroborates the necessity of solutions that can
accurately adopt the varying characteristics of acoustic sources
on a multi-class identification and discrimination perspective.

In this work, the usage of INS is proposed as meaning-
ful acoustic features to discriminate non-stationarity acoustic
sources. Fig. 1 (b) illustrates the scheme of designed composed
feature. A target signal x(t) is first divided into L overlapping
frames xl(t). Each framed signal xl(t) is then transformed to
a multi-taper time-frequency (TF) representation Sx(l, f) with
a corresponding non-stationary pattern, which is objectively
assessed by the INS measure considering N different Th/T
scale values. From each TF representation, the state-of-the-
art MFCC feature with M elements is extracted, leading to a
feature matrix of dimension L×M . Note that in this case the
multi-taper spectral is obtained with a single taper.

For every extracted MFCC vector, the proposed approach
calculates a reciprocal INS feature vector with size N , one
value per observable scale Th/T . By applying this procedure
in all frames, a resulting L × N INS feature matrix is
generated, measuring the non-stationary behavior of a target
signal through time. Therefore, the proposed solution accounts
for the new combined feature MFCC+INS of size L×(M+N).
The new feature can then be easily incorporated to different
models and classifiers. The MFCC+INS feature not only rep-
resent the signal into human auditory system perspective but
also incorporates information regarding the non-stationarity
of target sources which can be beneficial to acoustic source
classification.

III. EXPERIMENTS AND RESULTS

In order to evaluate the proposed INS objective measure as
a feature strategy for non-stationary acoustic source classifi-
cation, the following sources were selected from the Urban-
Sound database [11]: Air Conditioner, Car Horn, Dog Bark,
Drilling, Engine Idling, Jackhammer, Siren and Street Music.
All signals from this database were manually checked and
subjectively classified as Foreground or Background, related
to the distance between the acoustic source and the actual
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Fig. 2. Acoustic source classification accuracy for proposed MFCC+INS
features. Squares represent the baseline MFCC only scenario. The average
accuracy per number of INS features is also depicted as black dashed line.

TABLE I
NUMBER OF INS (# INS), CORRESPONDING Th/T SCALE AND AVERAGE

BALANCED ACCURACY (%).

# INS 0 1 2 3 4 5 6 7 8 9

Th/T - 0.003 0.006 0.012 0.025 0.042 0.083 0.125 0.2 0.4

(%) 59.6 62.1 62.6 62.8 62.8 63.1 63.5 63.7 63.8 63.7

recorder. Background signals can be composed of several
acoustic sources and such signals would rather imply tasks
of scene or impulse event classification, which are not the
focus of the present work. Therefore, only audios labeled as
Foreground are considered to guarantee the task of multi-class
source classification. This leads to a total of 4810 acoustic
signals sampled at 44.1 kHz. Experiments are conducted in a
10-fold cross-validation, as designed in [11].

Four different classification scenarios are adopted in the
evaluation comprising signal segments of 1.0, 2.0, 3.0 and 4.0
seconds. Acoustic signals with smaller duration (i.e. 1.0s) are
usually harder to correctly classify as the available information
is reduced. The state-of-the-art acoustic feature MFCC and
SVM classifier with is used as the baseline solution. The
SVM considered a linear kernel with ℓ2 penalty loss and
unity regularization C. A total of 40 MFCC coefficients are
extracted from 80 mel-scaled bands for every 400 ms frames
and 50% overlap. The main idea is to progressively incorporate
INS values with increasing Th/T scales, composing the hybrid
feature MFCC+INS and evaluate the INS as a feature for non-
stationary acoustic sources.

In Fig. 2 it is depicted the balanced accuracy obtained
for the baseline MFCC and proposed MFCC+INS feature.
Note that the baseline is represented by square marks and
correspond to the case where the number of INS feature
is zero. TABLE I summarizes which INS scale Th/T is
defined for each INS value. The same scales are adopted
for all signal durations. The proposed MFCC+INS feature is
evaluated incrementally always considering the n-th smallest
Th/T scales. Note that a single INS value (40 MFCC + 1 INS)
is sufficient to significantly increase the balanced accuracy
in all scenarios. On average, a single INS feature is able to
increase the balanced accuracy from 59.6% to 62.1%, which

TABLE II
ACOUSTIC SOURCE CLASSIFICATION ACCURACIES (%) OBTAINED WITH

1S AUDIO SIGNALS AND 40 MFCC WITHOUT INS (BASELINE).

Original
Sources

Predicted Sources
Air. Car. Dog. Dri. Eng. Jac. Sir. Str.

Air Conditioner 28.3 0.9 0.9 2.3 41.7 10.5 0.0 15.5
Car Horn 1.7 83.3 0.0 1.7 8.3 0.0 0.0 5.0
Dog Bark 0.8 0.0 81.6 3.6 6.6 0.2 3.4 3.8
Drilling 5.8 0.1 2.2 64.9 8.9 12.6 0.0 5.5
Engine Idling 5.5 0.0 0.7 5.3 60.9 20.0 0.2 7.3
Jackhammer 12.9 0.0 0.0 28.4 12.1 44.5 0.0 2.1
Siren 11.8 0.0 16.5 1.2 6.7 0.0 59.8 3.9
Street Music 8.0 0.3 7.4 8.8 21.0 4.3 2.7 47.4

Average Balanced Accuracy: 57.7%
TABLE III

ACOUSTIC SOURCE CLASSIFICATION ACCURACIES (%) OBTAINED WITH

1S AUDIO SIGNALS AND 40 MFCC + 9 INS FEATURES.

Original
Sources

Predicted Sources
Air. Car. Dog. Dri. Eng. Jac. Sir. Str.

Air Conditioner 34.1 0.0 0.4 3.2 40.6 8.3 0.7 12.8
Car Horn 2.4 83.1 0.0 2.4 4.8 0.0 0.0 7.2
Dog Bark 1.3 0.0 85.8 4.1 3.7 0.2 0.6 4.4
Drilling 6.6 0.2 1.2 62.9 10.8 13.1 0.6 4.6
Engine Idling 7.3 0.1 0.5 4.7 62.4 18.1 3.3 3.5
Jackhammer 8.8 0.0 0.0 22.4 11.3 54.4 0.0 3.1
Siren 10.8 0.0 9.3 3.5 4.6 0.0 69.9 1.9
Street Music 6.9 1.1 8.0 11.4 18.2 4.5 2.4 47.5

Average Balanced Accuracy: 62.5%

represents a 2.5 p.p. increment.
Observe that, for most applications, an unit increase in the

feature dimension would not imply on a substantial complexity
growth, which is an encouraging evidence for INS features.
Moreover, by continually adding INS of increasing Th/T
scales the average balanced accuracy is consistently improved,
achieving its highest score of 63.8% with eight INS values, a
4.2 p.p. increment. It is important to notice that a balanced
accuracy reduction is observed specially for Th/T = 0.4,
i.e, considering nine INS features. This is can be partially
explained by the fact that acoustic sources usually present
a reduction on its non-stationary behavior for higher Th/T
values [10] [4] [5]. Therefore the last incorporated feature
does not hold the same discrimination power over features
of reduced scale.

In order to evaluate the proposed MFCC+INS composed
feature, the balanced accuracy for scenarios with 1 second
and 4 seconds signals are selected. In TABLES II and III it is
presented the confusion matrix obtained for the classification
task of one second duration signals for the baseline and the
proposed composed feature with 9 INS features, respectively.
This corresponds to the most challenging scheme as the clas-
sification needs to be performed on a reduced size signal. In
this case, it is observed the highest average balanced accuracy
gain of 4.8 p.p. considering the proposed MFCC+INS feature.
Aside from Car Horn and Drilling, the composed feature is
able to improve the individual classification accuracy for all
sources. This is particularly true for the highly non-stationary
classes of Siren and Jackhammer, with a 10.1 p.p. and 9.9 p.p.
accuracy increase, respectively. Note that acoustic sources Air
Conditioner and Dog Bark also presented important accuracy
gains corresponding to 5.8 p.p. and 4.2 p.p. This experiment
indicates that the proposed INS feature is relevant to non-
stationary acoustic source classification, even for the challeng-
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TABLE IV
ACOUSTIC SOURCE CLASSIFICATION ACCURACIES (%) OBTAINED WITH

4S AUDIO SIGNALS AND 40 MFCC WITHOUT INS (BASELINE).

Original
Sources

Predicted Sources
Air. Car. Dog. Dri. Eng. Jac. Sir. Str.

Air Conditioner 31.8 0.4 0.7 2.8 42.2 8.8 0.0 13.3
Car Horn 1.9 83.0 0.0 0.0 5.7 0.0 0.0 9.4
Dog Bark 0.7 0.0 84.8 3.1 3.3 0.0 2.4 5.7
Drilling 6.4 0.0 2.0 64.7 9.7 10.9 0.0 6.3
Engine Idling 7.3 0.0 2.2 6.6 66.6 12.5 1.7 3.1
Jackhammer 15.3 0.0 0.0 23.0 7.2 45.0 0.0 9.5
Siren 10.3 0.0 15.1 1.2 5.2 0.0 63.5 4.8
Street Music 7.0 0.0 5.8 6.1 17.9 1.8 2.6 58.9

Average Balanced Accuracy: 62.3%
TABLE V

ACOUSTIC SOURCE CLASSIFICATION ACCURACIES (%) OBTAINED WITH

4S AUDIO SIGNALS AND 40 MFCC + 8 INS FEATURES.

Original
Sources

Predicted Sources
Air. Car. Dog. Dri. Eng. Jac. Sir. Str.

Air Conditioner 33.7 0.0 0.2 2.3 40.3 9.7 0.4 13.4
Car Horn 1.9 81.1 0.0 0.0 7.5 0.0 0.0 9.4
Dog Bark 0.5 0.0 89.1 1.7 2.4 0.0 1.0 5.5
Drilling 7.3 0.0 0.6 66.8 11.1 8.3 0.3 5.7
Engine Idling 10.4 0.0 0.2 6.0 65.0 12.4 3.2 2.7
Jackhammer 13.9 0.0 0.0 20.0 7.4 51.1 0.0 7.6
Siren 10.3 0.0 8.3 0.8 3.6 0.0 73.0 4.0
Street Music 4.3 0.0 4.8 8.0 14.2 2.2 2.4 64.0

Average Balanced Accuracy: 65.5%

ing scheme of reduced information.
Results obtained for signals of 4 seconds duration are

presented in TABLES IV and V. In this scenario, the highest
average balanced accuracy of 65.5% is achieved for MFCC
+ 8 INS, which corresponds to a 3.2 p.p. increment over
the baseline. Similar to the previous condition, the proposed
feature is able to increment the classification accuracy for most
acoustic sources. The highest individual accuracy gain of 9.5
p.p. is noted for Siren. Sources Jackhammer, Street Music and
Dog Bark reached increments of 6.1 p.p., 5.1 p.p. and 4.3 p.p.
These results reinforces that the propose INS-based feature is
able to incorporate meaningful information to non-stationary
acoustic source classification.

IV. CONCLUSION

In this work, a new combined feature MFCC+INS was
proposed to improve the recognition of non-stationary acoustic
sources. The solution incorporated the INS into the classical
MFCC, as a feature vector able to assess the non-stationary
behavior of acoustic signals in a frame-by-frame basis. Ex-
periments demonstrated that the new strategy outperforms
the baseline systems for the majority of individual acous-
tic sources, leading to significant increment in the average
balanced accuracy in all scenarios. Moreover, a single INS
feature value was sufficient to obtain significant gain on the
classification accuracy compared to the baseline solution.
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