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Quasi-Intersymbol Interference (QISI) Free Pulse
Shaping

Rodolfo Norio Toma and Felix Antreich

Abstract— This work presents a methodology to achieve pulses
with reduced intersymbol interference (ISI) and with improved
data transmission performance. The designed pulses are obtained
through the use of the prolate spheroidal wave functions (PSWF).
An optimization problem is formulated to achieve maximum
time-concentrated pulses and to ensure that they are ISI-free
for a limited number of symbol durations, achieving what is
called quasi-intersymbol interference (QISI) free. The resulting
pulse designs are compared to relevant candidate Nyquist pulse
designs from the literature and achieve comparable or enhanced
performance for low to high timing errors.

Keywords— Intersymbol interference (ISI), Nyquist pulses,
pulse design.

I. INTRODUCTION

The rapid growth of digital communications over the past
decades imposes not only efficient use of bandwidth being a
limited resource, but also higher data rates with less and less
transmit power [1].

Significant research has been devoted to the development
of intersymbol interference (ISI) free pulses, that guarantee
distortionless transmissions, and additionally the development
of pulse shaping filters with low sensitivity to timing er-
rors [2]. In practical receivers the presence of timing jitter
(synchronization errors) causes the actual sampling points to
deviate from the optimal positions leading to timing errors [3].
Another source of timing errors in the receiver is multipath
propagation [4].

Several contributions were made in pursue of the devel-
opment of Nyquist pulses, since the contribution of Nyquist
itself, from the the calculations used for error probabilities [5]
to the design of pulses with enhanced performance, e.g., the
"better than" raised cosine (BTRC) [6], the flipped-hyperbolic
secant (fsech) and the flipped-inverse hyperbolic secant
(farcsech) [7], the acos, acos[acos], acos[asech], acos[log],
asech, asech[acos], asech[asech], asech[log], acos[exp], and
asech[exp] pulses [2] [3], and the parametric linear combina-
tion pulses (PLCP) [8].

Taking another step forward in the development of strictly
bandlimited pulses, this work develops a methodology to
design pulses that follow the Nyquist ISI criterion and to max-
imize their time concentration. The proposed design method-
ology achieves quasi-ISI (QISI) free pulse designs by solving
a quadratically constraint quadratic program (QCQP) problem

Rodolfo Norio Toma, Brazilian Air Force, Aerospace Operations Com-
mand (COMAE), Brasilia-DF, e-mail: noriornt@fab.mil.br; Felix Antreich,
Department of Telecommunications, Aeronautics Institute of Technology
(ITA), São José dos Campos-SP, e-mail: fean@ita.br. This work was partially
supported by the Brazilian National Council for Scientific and Technological
Development (CNPq) under Grant 309248/2018-3 PQ-2 and 312394/2021-7
PQ-2.

[14] using the prolate spheroidal wave functions (PSWF) [9],
[10] as basis functions to establish a parametric problem.
The QCQP problem is maximizing time concentration of the
pulse design and enforcing a specified number of zeros at
multiple symbol duration T of the convolution of the transmit
and the signal-matched receiver filter. This method can be
considered as a framework for systematic pulse design with
specific properties and performance for different applications
and different degrees of timing errors. Such a systematic
design methodology has not been presented so far in the
literature for the design of ISI-free and especially QISI-free
pulses.

II. SYSTEM MODEL

We consider a basic transmission system with matched
filtering, with a single transmitter and one receiver with a
channel h(t) as shown in the system block diagram in Figure
1. The baseband equivalent of a digital modulated signal can

p(t) h(t) g(t)
sk

∑
∞

k=−∞
δ(t− kT )

s(t)

n(t)

r(t)
t = nT

r[n]

Fig. 1. System block diagram.

be given as

s(t) =

∞∑
k=−∞

sk p(t− kT ) ∈ C (1)

where sk represents the discrete information sequence of
symbols, p(t) is the strictly bandlimited pulse shape with
frequency response P (f) with P (f) = 0 for |f | > B and T
is the symbol duration. We also assume that the channel has a
response that is bandlimited to [−B,B] with ideal frequency
response characteristics, i.e., H(f) = 1. The baseband signal
s(t) passes through the channel h(t) and is superimposed
by complex additive white Gaussian noise n(t) drawn from
CN (0, σ2

n). Then the received signal is fed through the receive
filter g(t) and we get the filtered output signal

r(t) = s(t)∗g(t)+n(t)∗g(t) =
∞∑

k=−∞

skφ(t−kT )+ñ(t) (2)

where ñ(t) denotes the noise at the output of the receive
filter. Finally, after sampling in time intervals T we obtain
the received symbols r[n] with

r[n] =

∞∑
k=−∞

skφ[n− k] + ñ[n] (3)
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and n = 0,±1,±2, . . . . To achieve maximum possible signal-
to-noise-ratio (SNR) for the symbols sk we have to choose the
receive filter as the conjugate time-reversed as g(t) = p∗(−t)
and hence φ(t) = p(t) ∗ p∗(−t). We can reformulate (3) and
we get

r[n] = snφ[0] +

∞∑
k=−∞
n ̸=k

skφ[n− k]

︸ ︷︷ ︸
=ISI

+ñ[n]. (4)

In order to achieve reception of the desired symbols without
ISI the condition, which is called Nyquist ISI criterion, for
φ(t) can be given as

φ(nT ) = φ[n] =

{
1 n = 0
0 n ̸= 0

(5)

where we assume φ[0] = 1 without loss of generality.

III. PULSE DESIGN METHODOLOGY

In this section we will introduce a pulse design method
based on an optimization problem tailored to limit ISI.

A. Time Concentration

In order to facilitate implementation of the transmit and
receive filters time concentration of p(t) is an important
property. Thus, the needed time support for the filters can be
limited and a fast decay of p(t) can be achieved. Time and
frequency concentration of p(t) can be given by

T̄ =

∫ T/2

−T/2
|p(t)|2dt∫∞

−∞ |p(t)|2dt
and B̄ =

∫ B

−B
|P (f)|2df∫∞

−∞ |P (f)|2df
(6)

assuming ∫ ∞

−∞
|P (f)|2df =

∫ ∞

−∞
|p(t)|2dt = 1. (7)

In our case B̄ = 1 as we consider that p(t) is strictly
bandlimited to [−B,B]. Thus, due to the generalization of
the uncertainty principle of the Fourier transform [11, p. 67]
[12], [9] we get ∫ T/2

−T/2

|p(t)|2dt = T̄ < 1. (8)

It has been shown by Slepian, Landau, and Pollak in [12], [9]
and by Papoulis in [11, p. 68] that for any time-bandwidth
product ϱ = TB, T̄ ≤ χ0(ϱ) for B̄ = 1, where χ0(ϱ) is the
eigenvalue of the function ψ0(ϱ, t) which has the largest eigen-
value of a set of functions called the prolate spheroidal wave
functions (PSWF) [10], [13]. Thus, for any ϱ the maximum
time concentration in [−T/2, T/2] for B̄ = 1 can be achieved
when p(t) = ψ0(ϱ, t). This denotes the analytical solution for
maximum time concentration of a strictly bandlimited pulse
p(t).

B. The Prolate Speroidal Wave Functions (PSWF)

The PSWF are particularly well suited to form a set of basis
functions [12] to approximate bandlimited pulse shapes p(t).
They have the very interesting property of being orthogonal
over two different intervals in the time domain.

For any B > 0 and T > 0 the PSWF form an infinite set of
real functions ψ0(ϱ, t), ψ1(ϱ, t), ψ2(ϱ, t), . . . with associated
real positive eigenvalues χ0(ϱ) > χ1(ϱ) > χ2(ϱ), . . . . The
ψm and χm are functions of the normalized time-bandwidth
product ϱ = TB. The ψm(ϱ, t) are bandlimited to [−B,B]
and form a complete and orthonormal set of functions [12]∫ ∞

−∞
ψm(ϱ, t) ψn(ϱ, t) dt =

{
1, m = n
0, m ̸= n

. (9)

They also form a complete and orthogonal set in the interval
[−T/2, T/2] [12]∫ T/2

−T/2

ψm(ϱ, t) ψn(ϱ, t) dt =

{
χm(ϱ), m = n

0, m ̸= n
. (10)

The PSWF are solutions of the integral equation [12]

χm ψm(ϱ, t) =

∫ T/2

−T/2

sin(2πB(t− s))

π(t− s)
ψm(ϱ, s) ds. (11)

The Fourier transform Ψm(ϱ, f) of ψm(ϱ, t) can be expressed
in terms of ψm(ϱ, t). Following [12], [11] we get

Ψm(ϱ, f) =

{
(−j)m

√
T

λm 2B ψm(ϱ, f T/2
B ) for |f | ≤ B

0 else
.

(12)
Applying Parseval’s theorem to (9) we get∫ ∞

−∞
Ψm(ϱ, f) Ψ∗

n(ϱ, f) df =

{
1, m = n
0, m ̸= n

. (13)

The ψm(ϱ, t) are real, even for m even and odd for m odd.
Their Fourier transform Ψm(ϱ, f) is real and even for m even
and imaginary and odd for m odd.

C. QISI-Free Pulse Design

In order to formulate a parametric optimization problem we
use an expansion of the pulse shape p(t) based on the PSWF
dependent on the time-bandwidth product ϱ

p(t) =

M−1∑
m=0

xm ψm(ϱ, t) (14)

and

P (f) =

M−1∑
m=0

xm Ψm(ϱ, f). (15)

The expansion coefficients xm ∈ R provide the weighting
of the basis functions and enable parametrization of p(t) and
P (f).

In this work we follow the strategy to design pulses that
have a maximum time concentration which is not only benefi-
cial for the implementation in a real system, but also reduces
the effect of timing errors resulting from the tails of the pulses.
Furthermore, we introduce up to K nulls at multiples of the
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symbol period T of φ(t) and we consider pulses of even or
odd symmetry such that

φ(±kT ) = 0, for k = 1, 2, . . . ,K. (16)

Thus, to design pulses p(t) that are maximum time-
concentrated and that quasi fulfill the first Nyquist condition
for up to K symbol durations T before and after the maximum
of φ(t) we can formulate the optimization problem

max
x

xTT(ϱ)x (17)

subject to

||x||22 = xTx = 1 (18)
xTΦ1(ϱ)x = 0 (19)

...
...

xTΦK(ϱ)x = 0 (20)

where in order to maximize time concentration we can write∫ T/2

−T/2

(
M−1∑
m=0

xm ψm(ϱ, t)

)(
M−1∑
m=0

xm ψm(ϱ, t)

)∗

dt

=

M−1∑
m=0

x2mχm(ϱ) = xTT(ϱ)x (21)

with

x = [x0, x1, . . . , xM−1]
T ∈ RM×1 (22)

T(ϱ) = diag{[χ1(ϱ), χ2(ϱ), . . . , χM−1(ϱ)]
T} ∈ RM×M .

(23)

The first constraint of the optimization problem introduces
normalization of the power of p(t) with∫ ∞

−∞

(
M−1∑
m=0

xm Ψm(ϱ, f)

)(
M−1∑
m=0

xm Ψm(ϱ, f)

)∗

df

=

M−1∑
m=0

x2m

∫ ∞

−∞
Ψm(ϱ, f)Ψ∗

m(ϱ, f)df = xTx. (24)

The QISI-free constraints can be given by

φ(kT ) =

∫ ∞

−∞
P (f)P ∗(f)e−j2πfkT df

=

M−1∑
m=0

P−1∑
p=0

xmxp

∫ ∞

−∞
Ψm(ϱ, f)Ψ∗

p(ϱ, f)e
−j2πfkT df

= xTΦk(ϱ)x (25)

where

Φk(ϱ) =

 ϕ0 0(ϱ, k) · · · ϕ0P−1(ϱ, k)
...

. . .
...

ϕM−1 0(ϱ, k) · · · ϕM−1P−1(ϱ, k)

 , (26)

with

ϕm,p(ϱ, k) =

∫ ∞

−∞
Ψm(ϱ, f)Ψ∗

p(ϱ, f)e
−j2πfkT df (27)

and k = 1, 2, . . . ,K. The optimization problem described in
(17), (18), (19), and (20) is a non-concave QCQP problem, as

T(ϱ) ⪰ 0 and Φk(ϱ) are indefinite [14]. We use the general
fmincon function applying the interior-point algorithm of the
Optimization Toolbox of MATLAB [15] to solve the QCQP
problem initializing with x = [1, 0, . . . , 0]T.

IV. PERFORMANCE EVALUATION AND RESULTS

In this section we will discuss the performance and char-
acteristics of the achieved pulse designs compared to pulse
designs found in the literature.

A. Selected Pulse Characteristics
We selected pulse designs with K = 11 and K = 16

resulting from the QCQP. The pulses with K = 11 achieve
a very low symbol error probability in the case of larger
timing errors and the pulses with K = 16 achieve a similar
symbol error probability compared to pulse designs found in
the literature for lower timing errors when the sampling results
closer to the optimum sampling point.

In Figures 2, 3, 4, and 5, φ(t) is shown for the pulse
designs with K = 11 and K = 16 compared to the classically
used root-raised-cosine or square-root-raised-cosine (RRC)
pulse [4] in the time and frequency domain for ϱ = 0.675,
respectively. φ(t) for the RRC is called raised cosine (RC)
pulse [4].

Fig. 2. Time domain of the RC pulse and the pulse design for ϱ = 0.675
and K = 11.

B. Eye Diagram
In this section we analyse the eye diagrams for the RC pulse

and φ(t) of the proposed pulse designs obtained by sampling
two consecutive pulse periods of 29 consecutive pulses. Figure
6 shows the RC pulse’s eye diagram and Figures 7 and 8
depict the eye diagrams for the pulse designs with K = 11
and K = 16 for ϱ = 0.675, respectively.

We can see that the eye opening is slightly wider for the
two proposed pulse designs compared to the RC pulse which
together with lower zero-crossing distortion indicates that the
proposed pulse designs are less sensitive to timing errors [4].
However, we can also observe that at the optimum sampling
point for the two proposed pulse designs the distortion is
increased, which is the reason why we call our designs QISI-
free pulses and which indicates that the proposed designs for
zero timing error cause more ISI than the RC pulse.
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Fig. 3. Frequency domain of the RC pulse and the pulse design for ϱ = 0.675
and K = 11.

Fig. 4. Time domain of the RC pulse and time domain of the pulse design
for ϱ = 0.675 and K = 16.

Fig. 5. Frequency domain of the RC and the pulse design for ϱ = 0.675
and K = 16.

C. Error Probability

In this section we compare the different pulse designs based
on the resulting symbol error probability Pe. The Pe for
a certain pulse shape can be derived following the method
described in [5] with the number of coefficients considered
in the truncated Fourier series M = 99, the period Tf = 40,
29 interfering symbols, and an SNR of 15 dB. The Tables I
and II show Pe considering different timing errors t/T for

Fig. 6. Eye diagram of the RC pulse for ϱ = 0.675.

Fig. 7. Eye diagram of the pulse design for ϱ = 0.675 and K = 11.

Fig. 8. Eye diagram of the pulse design for ϱ = 0.675 and K = 16.

the proposed pulse designs with K = 11 and K = 16,
respectively.

TABLE I
ERROR PROBABILITY FOR K = 11 AND SNR = 15 dB

ϱ t/T = ±0.05 t/T = ±0.1 t/T = ±0.2 t/T = ±0.25
0.625 6.7985e-8 9.9934e-7 1.9120e-4 0.0016
0.675 4.0431e-8 3.9518e-7 5.6022e-5 5.0937e-4
0.75 2.5105e-8 1.4241e-7 1.2900e-5 1.2691e-4

0.875 1.4655e-8 4.5241e-8 2.7108e-6 3.3311e-5
1 1.2667e-8 3.2560e-8 1.4673e-6 1.8016e-5
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TABLE II
ERROR PROBABILITY FOR K = 16 AND SNR = 15 dB

ϱ t/T = ±0.05 t/T = ±0.1 t/T = ±0.2 t/T = ±0.25
0.625 5.5215e-8 1.1667e-6 3.2115e-4 0.0026
0.675 3.9707e-8 5.0077e-7 9.3709e-5 8.4671e-4
0.75 2.3979e-8 2.0349e-7 3.0379e-5 3.0199e-4
0.875 1.4474e-8 4.9103e-8 3.4403e-6 4.2803e-5

1 1.2667e-8 3.2570e-8 1.4685e-6 1.8030e-5

Comparing Pe in Tables I and II we can observe that the
designed pulses for K = 11 are more suitable for systems
with larger timing errors and the designed pulses for K = 16
are more suitable for systems with smaller timing errors.

Tables III, IV, and V show Pe for the proposed pulse
designs for K = 11 and K = 16 (called PPK11 and
PPK16), the RC, the BTRC [6], the fsech and farcsech [7], the
acos, acos[acos], acos[asech], acos[log], asech, asech[acos],
asech[asech], asech[log], acos[exp], asech[exp] pulses [2], [3],
and the PLCP [8].

TABLE III
ERROR PROBABILITY FOR ϱ = 0.625 AND SNR = 15 dB

Pulse t/T = ±0.05 t/T = ±0.1 t/T = ±0.2 t/T = ±0.3
PPK11 6.7985e-8 9.9934e-7 1.9120e-4 0.0085
PPK16 5.5215e-8 1.1667e-6 3.2115e-4 0.0125

RC 8.2189e-8 2.8184e-6 9.7462e-4 0.0259
BTRC 5.8117e-8 1.2980e-6 3.5678e-4 0.0145
fsech 7.5579e-8 2.3337e-6 7.7201e-4 0.0230

farcsech 5.3996e-8 1.1011e-6 2.8405e-4 0.0125

TABLE IV
ERROR PROBABILITY FOR ϱ = 0.675 AND SNR = 15 dB

Pulse t/T = ±0.05 t/T = ±0.1 t/T = ±0.2 t/T = ±0.3
PPK11 4.0431e-8 3.9518e-7 5.6022e-5 0.0034
PPK16 3.9707e-8 5.0077e-7 9.3709e-5 0.0052

RC 5.9997e-8 1.3896e-6 3.9084e-4 0.0155
BTRC 3.9253e-8 5.4021e-7 1.0129e-4 0.0059
fsech 5.4002e-8 1.0944e-6 2.8000e-4 0.0125

farcsech 3.5970e-8 4.4580e-7 7.6203e-5 0.0047
PLCP 3.9271e-8 5.9872e-7 9.9346e-5 -
acos 3.3527e-8 3.9249e-7 6.5764e-5 4.1127e-3

acos-acos 3.2753e-8 3.7964e-7 6.4348e-5 4.0152e-3
acos-asech 3.3558e-8 3.9255e-7 6.5582e-5 4.1067e-3
acos-log 3.5470e-8 4.3365e-7 7.3486e-5 4.5509e-3

asech 3.5970e-8 4.4581e-7 7.6204e-5 4.6951e-3
asech-acos 3.2264e-8 3.7363e-7 6.4494e-5 4.0024e-3
asech-asech 3.2255e-8 3.7275e-7 6.4110e-5 3.9850e-3
asech-log 4.2145e-8 6.2866e-7 1.2567e-4 7.0123e-3
acos-exp 3.3806e-8 3.9786e-7 6.6617e-5 4.1638e-3
asech-exp 3.2591e-8 3.7775e-7 6.4445e-5 4.0128e-3

We can observe in Tables III, IV, and V that PPK16 achieves
a comparable Pe for small timing errors with t/T ≤ ±0.05
with respect to all other pulse designs. For timing errors t/T ≥
±0.1 PPK11 achieves comparable or lower Pe than all the
other considered candidate pulses. Thus, as discussed above,
PPK11 provides higher robustness for larger timing errors.

V. CONCLUSION

This work developed a methodology for designing QISI-free
pulses solving a QCQP problem using the PSWF and aiming
to achieve a better performance, especially in case of timing
errors. The proposed designs, PPK11 and PPK16, achieve
comparable or better symbol error probability Pe compared
to the main pulse designs found in the literature. It could be

TABLE V
ERROR PROBABILITY FOR ϱ = 0.75 AND SNR = 15 dB

Pulse t/T = ±0.05 t/T = ±0.1 t/T = ±0.2 t/T = ±0.3
PPK11 2.5105e-8 1.4241e-7 1.2900e-5 0.0011
PPK16 2.3979e-8 2.0349e-7 3.0379e-5 0.0023

RC 3.9723e-8 5.4890e-7 1.0217e-4 0.0060
BTRC 2.4134e-8 1.8580e-7 2.0878e-5 0.0016
fsech 3.4949e-8 4.1186e-7 6.6009e-5 0.0042

farcsech 2.1875e-8 1.4916e-7 1.5344e-5 0.0012
PLCP 2.4356e-8 1.8659e-7 1.9743e-6 -
acos 2.0431e-8 1.3300e-7 1.4717e-5 1.2578e-3

acos-acos 2.0054e-8 1.3014e-7 1.5328e-5 1.3642e-3
acos-asech 2.0438e-8 1.3273e-7 1.4563e-5 1.2421e-3
acos-log 2.1559e-8 1.4514e-7 1.4987e-5 1.2082e-3

asech 2.1875e-8 1.4917e-7 1.5345e-5 1.2253e-3
asech-acos 1.9865e-8 1.2958e-7 1.6248e-5 1.4975e-3
asech-asech 1.9845e-8 1.2902e-7 1.6057e-5 1.4781e-3
asech-log 2.6157e-8 2.1763e-7 2.5364e-5 1.8850e-3
acos-exp 2.0583e-8 1.3446e-7 1.4657e-5 1.2385e-3
asech-exp 1.9992e-8 1.3005e-7 1.5658e-5 1.4094e-3

shown that for low timing errors the peak distortion effects
are more dominant while for larger timing errors a fast decay
of the pulse and thus a high time-concentration is beneficial.
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