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Abstract— The increasing demand for higher rates and uni-
formity of rates among users has given rise to one new system
in which the user is served by more than one Access Point. In
such systems, one challenge is to find the optimal cluster of Access
Points to serve the user. One way of doing that has been proposed
by greedy pilot assignment and clustering, however such a way
resorts to the knowledge of the large-scale coefficients of the
channel between users and Access Points. This paper aims to
find an algorithm that not only keeps system performance stable
but also can be performed on more realistic systems, without
knowledge of the channel and the large-scale coefficients besides
having a low complexity, reduced to computing correlation
matrices.
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I. INTRODUCTION

Telecommunications networks are constantly facing ever-
growing demands for higher transmission rates with greater
quality. In order to address this demand various technologies
were proposed. By use of spatial multiplexing methods and the
statistics of the communication channel, [1] suggested that an
increased number of antennas at an access point (AP) could
lead to improved performance by coherent combining of the
signals transmitted to an user equipment (UE) provided that
the channels of each AP antenna to the UE are independent
between each other. Such independence would result in the
vanishing of the small-scale fading coefficients with only the
large-scale coefficients remaining. Although this proposition
is capable of reducing or even removing the small-scale
fading interference, it is necessary for the phenomena of
channel hardening to occur, that is, the channel of the UEs
to their respective AP should be uncorrelated, which is not
guaranteed to happen into real-life communication networks.
This hypothesis also assumes perfect channel state information
(CSI) knowledge.

In order to acquire CSI, the channel coefficients must be
estimated. Various estimation methods such as the ones of
[2] and [3] have been proposed, but they consider frequency
selective channels and non-linear methods of estimation. A
linear channel estimation method is used in [4] by linear
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minimum mean square error estimator (MMSE) using pilot
signals. [4] also showed that in real-life applications, the
same pilot signal must be reused by multiple UEs, impacting
interference from the channel of the same pilot UEs into
the channel estimate of the desired UE. Trying to address
this limitation, authors such as [5] have proposed methods of
removing pilot interference by singular value decomposition
(SVD) of the received uplink signal. Such methods, however,
resort to systems with controlled interference and few UEs,
which may not be guaranteed in real-life applications. This
work uses the proposed algorithm by [6] to assign pilots to
UEs that are possibly far apart from each other and would
result in lesser interference from pilot contamination.

The use of traditional cell systems, in which the UE is
connected to only one AP, has shown that the transmission
rates from each UE suffer great variation, especially at the
cell edge. Recent works [7] propose the use of cell free (CF)
networks, that is, networks in which each UE connects to a
subset of APs instead of only one. [8] has also shown that
the system must be scalable, therefore the UE should not be
served by all APs in the network, but only by a subset. Thus,
it is important to select the most suitable APs to compose the
subset. By selecting the appropriate APs, [8] has shown that
the transmission rates of UEs tend to suffer fewer variations
compared to traditional cellular MIMO.

The authors in [8] have assigned the pilots to the UEs
by a greedy algorithm. They have also used this assumption
to select the APs to each UE. The pilot assignment and
the AP clustering are based on the information gathered by
transmissions of known pilot signals to the APs and the
processing of this information to generate channel estimates
over various coherence blocks. Therefore, this work aims to
establish an algorithm that reduces the pilot contamination and
assigns the UE to the APs with reasonable channel quality,
using the estimated channel gains.

II. SYSTEM MODEL

A. Spatial Setup Model

For this work, we consider the square grid scenario, as seen
in Fig. 1, in which the K UEs and the L APs are uniformly
distributed over a square of area A. The APs possess each
N antennas and the UEs are single antennas. The channel
between a given UE k and an antenna n of an AP l is denoted
hnlk.
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Fig. 1. Cell Free setup with APs and UEs randomly deployed. Each colored
oval corresponds to the AP cluster of an UE. The APs are connected to a
CPU

The model adopted for the channel is the block fading
model, in which the communication channel coefficients are
constant over a time interval defined as coherence time Tc,
and the frequency range at which the channel is said to be
flat, that is, not distorted is defined as coherence bandwidth
Bc. Thus the coherence block is the number of symbols that
can be transmitted over a flat time invariant channel and is
given by τc = TcBc.

Additionally, the adopted channel model is the correlated
Rayleigh fading model taken from [8], in which the AP
antennas propagation waves are more likely to be dispersed
over a certain direction, thus being correlated, but the UE
location favors multipath and scattering, and thus the small
scale fading is still modeled as Rayleigh.

The channel vector hkl ∈ CN×1 between UE k and AP l
is a complex normal variable of zero mean and variance Rkl,
where R ∈ CN×N is the spatial covariance matrix The model
adopted for the spatial covariance matrix is the local scattering
model used by authors like [9] and [10], in which

[R]lm = β

∫ ∞

−∞

∫ ∞

−∞
ej2π(l−m)(cos(φ+ϵ) sin(θ+δ))p(ϵ, δ)dϵdδ,

(1)
where

p(ϵ, δ) =
1√
2πσφ

e−ϵ2/2σ2
ϕ

1√
2πσθ

e−δ2/2σ2
θ . (2)

The terms φ and θ are the azimuth angle and the elevation
angle respectively between the AP and the UE. The terms
σφ and σθ are the angular standard deviation (ASD) of the
azimuth and elevations angles, that is the measure of the
dispersion between the possible angles between the UE and
the AP.

The coefficients βkl =
tr(Rkl)

N are the large scale coefficients
between UE k and AP l, which are also defined accordingly
to [9], in decibels and tr(.) is the trace operator:

β = P (d0)− 10α log(d/d0)− FdB , (3)

where the term P (d0) is the pathloss at the reference distance
d0 and is usually dependent on the carrier frequency, the an-

tenna’s characteristics, as well as propagation properties. The
term α is the attenuation coefficient reflecting the propagation
medium, and FdB is the shadow fading term, obtained from
[8].

B. Uplink Transmission
On CF systems, multiple APs serve one UE. Define Mk,

the AP cluster containing all of the APs that serve the UE.
Thus, we can define the matrix that selects the clusters from
UE k, Dkl as

Dkl =

{
IN , l ∈ Mk

0N×N , otherwise
, (4)

where IN is the identity matrix of size N . In the uplink, each
AP receives a superposition of the signals from the UEs, given
by:

yl =

K∑
k=1

hklsk + z, (5)

where sk is the symbol transmitted by UE k at a given time.
The channel vector hkl follows a complex normal distribution
hkl ∼ NC(0,Rkl). The noise received at each AP is a
complex normal random vector z ∼ NC(0, σ

2
nI), of addictive

white gaussian noise (AWGN) coefficients, where σ2
n is the

average noise power.
To correctly decode the signal from each UE, each AP

multiplies the received signal vector by the combining vector,
vkl ∈ CN×1. Since not all the users will connect to the AP,
the resulting decoded signal will be,

ŝk = v∗
klhklsk +

K∑
i=1,i̸=k

v∗
klhilsi + v∗

klzl (6)

assuming that l ∈ Mk and v∗
kl = Dklvkl. In order to do so,

the receiver must have CSI. To obtain CSI, the receiver must
estimate the channel so that the combining vector is obtained
accordingly. In the next section methods of estimating the
channel and consequently allocating pilots in order to reduce
interference and selecting the APs with reasonable channel
quality will be discussed.

Defining the collective channel h ∈ CNL×1, the collective
D ∈ CNL×NL matrix and the collective combiner v ∈ CNL×1

for UE k:

hk =


hk1

hk2

...
hkL

 , vk =


vk1

vk2

...
vkL

 , (7)

with Dk = diag(Dk1,Dk2, . . . ,DkL). CF systems must have
CSI in order to be able to correctly decode the signals. One
way to acquire it is by estimating the channel coefficients by
use of linear MMSE channel estimation, given by

ĥkl =
√
pkRklΨ

−1
tkl

ypilot
tkl

. (8)

The term ypilot
tkl

∈ CN×1 refers to the transmitted uplink signal
received from the transmitted UE pilot tk, that is

ypilot
tkl

=
√
ηkhkl +

∑
i∈Pk\k

√
ηihil + Zlϕtk , (9)
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where ηi is the power of the pilot transmitted by the i-th UE
and ϕtk is a pilot sequence of length τ from a pilot book
Pk such that it’s vectors obey the relationship ϕkϕ

H
i = δik,

where (.)H is the transpose conjugate operator. The matrix
Ψtkl ∈ CN×N is the uplink signal correlation matrix, that is

Ψtkl = E
{
ypilot
tkl

(ypilot
tkl

)H
}
=

∑
i∈Pk

ηiRil + σ2
nI, (10)

where E{.} is the expected value operator. From Eq. (9) it is
possible to see that the channel estimate by least squares (LS)
from UE k will be contaminated by the UEs using the same
pilot tk from the pilot book Pk. That is why it is important to
find a pilot assignment algorithm such that this interference is
reduced. Since the estimated CSI is not perfect, the correlation
error matrix C ∈ CN×N is defined as

Ckl = E
{
h̃klh̃

H
kl

}
= Rkl − ηkRklΨ

−1
tkl

Rkl, (11)

where h̃kl = hkl− ĥkl, and thus the estimated channel vector
is distributed as ĥkl ∼ NC(0N ,Rkl −Ckl)

1) Spectral Efficiency for Centralized Uplink Operation: In
centralized networks, the CPU processes the received signals
at each AP and selects the appropriate combining vector for
each UE-AP pair. A lower bound for the spectral efficiency
(SE) of the centralized uplink operation is given by

SEk =
τu
τc

E {log2(1 + SINRk)} , (12)

where τu is the number of transmitted uplink symbols, with
the instantaneous effective signal to interference to noise ratio
(SINR) given by

SINRk =
pk|vH

k Dkĥk|2∑K
i=1
i ̸=k

pi|vH
k Dkĥi|2 + vH

k Ekvk + σ2||Dkvk||
,

(13)
where ||.|| is the norm and

Ek =

K∑
i=1

piDkCiDk. (14)

2) Spectral Efficiency for Distributed Uplink Operation:
In the distributed case, each AP estimates the channels of its
connected UEs and selects the appropriate combining vector.
Opposed to the centralized case, the CPU is only required to
process the combined signals. Since the CPU has knowledge
of all of the estimated channels, it should be able to assign
larger weights to the channels of APs that have larger signal to
noise ratio (SNR)s. Those weights, denoted by akl are known
as large scale fading decoding (LSFD) coefficients, and were
used in works such as [11]. Also, by defining

gki =

 vH
k1Dk1hil

...
vH
kLDkLhiL

 , (15)

we can define a lower bound for the SE of the distributed
uplink operation as

SEk =
τu
τc

E {log2(1 + SINRk)} , (16)

with the instantaneous effective SINR given by

SINRk =
pk|aH

k E{gkk}|2

aH
k (

∑K
i=1 piE{gkigH

ki} − pkE{gkk}E{gH
kk}+ Fk)ak

,

(17)
where Fk = σ2

ndiag(E{||vk1Dk1||2}, . . . ,E{||vkLDkL||2}).

III. PILOT ASSIGNMENT AND AP CLUSTERING
FORMATION ALGORITHMS

A. Dynamic Cooperation Clustering Formation

One important step for the implementation of CF systems
is the assignment of the UEs to the APs. Such assignment
is defined as dynamic cooperation clustering (DCC). It is
dynamic because, since the large-scale coefficients vary with
time (although many times such variation is only perceived
after thousands of coherence blocks), the clustering must be
performed once again.

Ideally, each UE should be served by all the available UEs
in the grid. However, the authors of [8] have shown that
such a method is computationally expensive, and for networks
where there are thousands of APs and hundreds of UEs, it
can become unfeasible. Therefore only some of the APs must
be chosen by a specific UE. The above algorithms usually
assume knowledge of the spatial covariance matrices, and
consequently, the large scale coefficients βkl.

In real-life applications, however, such parameters are not
known and must be estimated, so that the estimated covariance
matrix and the large-scale coefficients are given by Rsample

and β̂ respectively. The proposed algorithm uses the estimated
large-scale fading coefficients, normalizes them and selects the
APs for each UE based on a threshold value.

1) Correlation Clustering Algorithm: Considering the num-
ber of UEs a multiple of the number of orthogonal pilot
sequences, τ from the pilot book Pk. Each AP receives the
transmission from τp UEs and estimates the channel by LS,

ĥkln =
∑

i∈Pk\k

hilϕ
H
ti ϕtk + Zklϕtk/

√
ηk, (18)

where the subscript n is the transmission number of UE k.
Since the pilots are orthogonal, Eq. (18) reduces to

ĥkln = hkl + Zklϕtk/
√
ηk. (19)

After all UEs have transmitted, the APs average the LS
estimates to obtain the average estimated channel by LS,

hLS
kl = E

{
ĥkl

}
. (20)

In order to estimate the spatial covariance matrix, the average
LS estimate is obtained for a number nC of coherence blocks,
such that the estimated spatial covariance matrix is given by

Rsample
kl =

1

nC

nC∑
c=1

(hLS
ckl)(h

LS
ckl)

H (21)

After obtaining the estimated large-scale coefficients for each
UE-AP pair, they are normalized in such a way that

β̃sample
kl =

βsample
kl − β̄sample

k√
Var(βsample

k )
, (22)
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where β̄sample
k is the mean of the estimated large scale co-

efficients of UE k over all the APs and Var(βsample
k ) is the

variance, so that each coefficient β̃sample
kl is distributed with 0

mean and unit variance. Each UE connects to the APs that
possess the normalized large-scale coefficient above a certain
threshold γ. That way the UE connects only to the APs with
reasonable signal strength.

B. Pilot Assignment

1) Pilot Assignment Algorithm: In order to find the near-
optimal pilot assignment so that the same pilot signal is
delegated to the UEs that are geographically apart, the present
work uses the Repulsive Clustering Techniques discussed by
[6], which consists on maximizing the following objective
function, where x of dimensions K × τp is the binary matrix
that assigns the pilot to each UE:

max
x

τp∑
t=1

K∑
k=1

K∑
k̃=k+1

f(k, k̃)x[k, t]x[k̃, t]

s.t.
τp∑
t=1

x[k, t] = 1

K

τp
≤

K∑
k=1

x[k, t] ≤ K

τp
+ 1

(23)

The function f(k, k̃) is defined as, by defining Rβkβk̃
=

BT
kBk̃, where Bk is the vector of large scale coefficients from

UE k to all APs,

f(k, k̃) =
Rβkβk̃√

diag(Rβkβk̃
)⊗ diag(Rβkβk̃

)
, (24)

where the a⊗b operation is the outer product between a and b
and k and k̃ are arbitrary UE indices. The algorithm assumes
that the users are separated into τp disjoint clusters. Firstly
the UEs are allocated pilots randomly and the value of the
objective function is obtained. Then one element u from any
cluster U is swapped with one element w from another cluster
W . Then the overall score is calculated according to Eq. (23).
If the score increases, then the elements are swapped. If not,
the elements are swapped back. This is repeated for all of the
elements of all clusters. Then the score is again compared to
the score before the swapping of clusters and elements. If the
score is greater then repeat the algorithm again. If however,
the score is lower, then the allocation of pilots had reached a
point such that the interference between non-orthogonal pilots
is reduced, so the algorithm should stop.

IV. NUMERICAL RESULTS

In order to compare the performance of algorithms, the
proposed threshold algorithm with γ = −0.1 is compared
with the random pilot assignment, with γ = −0.1, and the
greedy algorithm of [8]. The setup of [8] is used, in which
K = 40 UEs are served by L = 100 APs, each with
N = 4 antennas, who are randomly deployed in a square
grid of area 1 km2. Each AP has an elevation of h = 10 m

to each UE. The received noise power is σ2
n = −94 dBm,

and the transmitter power is p = 20 dBm. The reference
channel gain of the pathloss model is P (d0) = −140.6 dB
at the reference distance d0 = 1 km. The shadowing standard
deviation is σF = 4 dB. The ASDs are all equal to 15 degrees,
ddecorr = 9 m, and the APs are deployed according to a wrap-
around topology as described by [9]. The mean LS channel
estimate is performed after nt = 20 transmissions, and the
spatial covariance matrix is estimated over nC = 30 coherence
blocks. The channel coherence block length is τc = 200.
For the simulation, the used combiners will be the partial
regularized zero forcing (PRZF), the partial mean square error
estimator (PMMSE), the near optimal local partial minimum
square error estimator (nopt-LPMMSE), and the optimal local
minimum square error estimator (opt-LMMSE), defined by
[8]. The SEs will be compared for the proposed threshold
algorithm with γ = −0.1. The reason for this value is that,
assuming that the large scale coefficients are a random variable
dependent on uniformly distributed distances and log-normal
shadowing coefficients, the majority of them will lie, after
various simulations, above the -0.2 value. Since this value is
such that almost every AP is selected, the value of -0.1 is
chosen instead. The SEs will also be compared for the random
pilot assignment (the same as the proposed algorithm, but
instead of finding the sub-optimal pilot assignment, they are
randomly chosen for the UEs), and the greedy algorithm of [8].
The cumulative distribution function (CDF) of the centralized
and distributed uplink SEs are shown in Fig. 2 and Fig. 3:
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Spectral Efficiency [bps/Hz]

0.0
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SE_P_MMSE random
SE_P_MMSE threshold
SE_P_MMSE greedy
SE_PRZF random
SE_PRZF threshold
SE_PRZF greedy

Fig. 2. CDF for the SE of different combining methods for centralized uplink
operation. Continuous lines are the SEs obtained from PMMSE combining
and dashed lines the SE obtained from PRZF combining

To better compare the systems, the 10-th, 50-th and 90-th
percentile of each of the methods is shown in I: Comparing
the values, it can be seen that the SEs obtained by PMMSE
are greater than those obtained from PRZF. This is explained
by the fact that the PRZF combiner is a simplification of the
PMMSE since it neglects the interference between UEs that
are connected to the same AP. The random pilot assignment
algorithm has the lowest SEs in all cases, since it doesn’t
aim to reduce the co-pilot interference. The greedy and the
threshold algorithm have a similar performance, with the
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random greedy threshold
Percentile PRZF PMMSE LP-MMSE L-MMSE PRZF PMMSE LP-MMSE L-MMSE PRZF PMMSE LP-MMSE L-MMSE
90 3.35 3.91 1.69 1.84 3.95 4.20 2.31 2.50 3.98 4.22 2.35 2.59
50 5.52 6.02 3.78 4.03 6.49 6.73 4.39 4.59 6.19 6.43 4.33 4.59
10 9.16 9.55 7.48 7.68 10.41 10.62 8.12 8.28 10.01 10.22 8.07 8.28

TABLE I
PERCENTILES OF THE SE FOR RANDOM, GREEDY AND THRESHOLD ALGORITHMS

0 2 4 6 8 10 12
Spectral Efficiency [bps/Hz]

0.0
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SE_LP_MMSE random
SE_LP_MMSE threshold
SE_LP_MMSE greedy
SE_L_MMSE random
SE_L_MMSE threshold
SE_L_MMSE greedy

Fig. 3. CDF for the SE of different combining methods for distributed
uplink operation. Continuous lines are the SEs obtained from nopt-LPMMSE
combining and dashed lines the SE obtained from opt-LMMSE combining

threshold algorithm slightly higher in the 90-th percentile,
and the greedy algorithm higher by a margin of 0.4 bps/Hz
in the 50-th and 10-th percentiles. However, simulation time
was 7 times larger for the analyzed system when using the
greedy algorithm than when threshold algorithm was used.
This happens because the greedy method selects τp UEs to be
served by each AP. On the other hand, the threshold method
selects only the UEs with the desired channel quality to be
served by the AP, which tend to be less than τp. Thus, it is
less computationally expensive than the greedy method, for
similar performance.

The same considerations of the centralized case can be
done for the distributed: however, one should notice that
for a broader threshold γ, the performance gap between
nopt-LPMMSE and opt-LMMSE combining is large, since
few APs mean that the near-optimal LSFD coefficients will be
computed based only on the connected APs channel estimates
and not all of them. Although it is also possible to notice
that the gap between the SEs of both setups is smaller in the
distributed case than in the centralized. This happens because
the assignment of LSFD coefficients for each AP attributes
a higher weight to the AP with the greatest channel gain,
which is probably the AP closest to a specific UE. Finally,
we can see that the distributed case has overall smaller SEs
than the distributed one. However, the distributed case makes
it possible that more APs be included in the grid, as opposed
to the centralized case, where computation must begin once
again every time more APs are added to the grid.

V. CONCLUSION

The proposed algorithm performs similarly to the one
proposed by [8], if we consider a threshold γ, such that a
sufficient number of APs is connected to each UE. For the
analyzed system it can be seen that the proposed algorithm is
viable since performance is satisfactory and the complexity is
reduced to simply estimating the spatial covariance matrix and
performing operations with the correlation between estimated
large-scale coefficients. The proposed algorithm is heuristic,
for the sake of reducing complexity. Future research might
consider assigning the APs to the UEs and allocating the pilots
by using more sophisticated methods such as Neural Networks.
Optimization of the combining vectors can also be the object
of future research, to further improve the SE of each UE.
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