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Abstract— This paper proposes a tensor-based parametric
modeling and estimation framework in MIMO systems assisted
by intelligent reflecting surfaces (IRSs). We present two
algorithms that exploit the tensor structure of the received pilot
signal to estimate the concatenated channel. The first one is an
iterative solution based on the alternating least squares algorithm.
In contrast, the second method provides closed-form estimates
of the involved parameters using the high order single value
decomposition. Our numerical results show that our proposed
tensor-based methods provide improved performance compared
to competing state-of-the-art channel estimation schemes, thanks
to the exploitation of the algebraic tensor structure of the
combined channel without additional computational complexity.

Keywords— channel estimation, intelligent reflecting surfaces,
tensor-based algorithm, complexity analysis

I. INTRODUCTION

Over the last few years, intelligent reflecting surface (IRS)
has been considered one of the possible technologies to be
deployed beyond fifth generation (B5G) and sixth generation
(6G) wireless networks due to its potential to improve the
coverage [1], [2]. An IRS is a 2D panel composed of
many passive reflecting elements whose elements are capable
of independently changing the phase shifts of impinging
electromagnetic waves to maximize the signal-to-noise ratio
(SNR) at the intended receiver [3]. Hence, channel estimation
must be performed at the end nodes of the network and
the receiver should estimate the involved channels from the
received pilots reflected by the IRS according to a training
protocol. Several works have addressed this problem, as
mentioned in [4]–[11].

As pointed out in [4], in IRS-assisted networks channel
estimation methods can be divided into structured and
unstructured techniques exploiting the parametric (geometric)
modeling of the cascaded channel and methods exploiting
the combined channel structure, respectively. Also, in [5] a
twin-IRS structure consisting of two IRSs is proposed as a way
to obtain the spatial signatures of the involved channels. Also,
authors in [6] propose a low-complexity channel parameter
estimation that exploits the decoupling of the pilot design
along the horizontal and vertical domains.

The authors in [7] propose channel parameter estimation
using a low-rank PARAFAC tensor in the context of
millimeter Wave (mmWave) systems. The authors in [8] use a
tensor approach to perform supervised channel estimation, in
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which the decoupling of the BS-IRS and IRS-UE channels
is achieved. Then, [9] proposes a tensor-based receiver
formulated as a semi-blind problem that jointly estimates
the involved channels and transmitted data. The work in
[10] proposes a set of two tensor-based algorithms to do
channel parameter estimation under unknown IRS hardware
impairments. In our previous work [11], we propose a
two-stage tensor-based framework for parametric channel
parameter estimation and data detection of time-varying
channels based on a 4th order PARAFAC model.

In this paper, we propose a new signal modeling that
exploits the geometric channel structure to estimate the spatial
signatures of the IRS-assisted multiple input multiple output
(MIMO) communication systems and formulate a 3rd order
Tucker tensor model, and derive a set of two tensor algorithms
that solve the channel parameter estimation problem by
either alternating least squares (ALS) or high order single
value decomposition (HOSVD). Furthermore, we also study
the computational complexity of the proposed schemes and
selected benchmark solutions. Our simulation results show
that the proposed techniques outperform the classic least
squares (LS) and the state-of-the-art Khatri-Rao factorization
(KRF) [8] algorithms without increasing the computational
complexity.

Notation: Scalars, vectors, matrices, and tensors are
represented as a,a,A, and A. Also, A∗, AT, AH, and
A† stand for the conjugate, transpose, Hermitian, and
pseudo-inverse, of a matrix A, respectively. The jth column
of A ∈ CI×J is denoted by aj ∈ CI×1. The operator vec(·)
transforms a matrix into a vector by stacking its columns,
e.g., vec(A) = a ∈ CIJ×1, while the unvec(·)I×J operator
undo the operation. The operator D(·) converts a vector into
a diagonal matrix, Dj(B) forms a diagonal matrix R×R out
of the jth row of B ∈ CJ×R. Also, IN denotes an identity
matrix of size N × N . The symbols ⊗ and ⋄ indicate the
Kronecker and Khatri-Rao products.

II. SYSTEM MODEL

We consider an uplink IRS-assisted MIMO scenario with a
base station (BS) equipped with M receiver antennas, which
receives a signal from a user equipment (UE) equipped with Q
transmit antennas via a passive IRS with N reflecting elements
as shown in Fig. 1. The transmission has length of T time-slots
and the received pilot signal at the t-th time-slot is given by

yt=GD(st)Hzt + vt ∈ CM×1, (1)

where zt is the pilot sequence, D(st) is the IRS phase-shift
matrix, and vt is the additive white Gaussian noise (AWGN)
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Fig. 1: Proposed IRS-assisted MIMO system scenario.

vector with t ∈ {1, · · · , T}. We assume that the IRS-UE
channel, H , and the BS-IRS channel, G, remain constant
during T time-slots and consider a mmWave scenario adopting
a multipath channel model [12] for the involved channels. We
can express these channel matrices as follows
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where G(LOS), and H(LOS), are the line of sight (LOS)
components and G(NLOS), and H(NLOS) are the non-line of
sight (NLOS) components. Also, KG and KH are the Rician
factors for channels G and H . The lth one-dimensional
steering vector of the BS is arx(µ

(l1)
bs ) having spatial frequency

defined as µ(l1)
bs = πcos(ϕ(l1)bs ) with ϕ

(l1)
bs being the angle of

arrival (AoA), which can be further written in terms of spatial
frequency assuming uniform linear array (ULA) as [13]

arx(µ
(l1)
bs ) =
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1, · · · , e−j(M−1)µ

(l1)
bs

]T
∈ CM×1. (6)

Similarly, the pth one-dimensional steering vector for the
UE is atx(µ

(l2)
ue ) having spatial frequency, which is defined as

µ
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ue = πcos(ϕ(l2)ue ), with ϕ

(l2)
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(AoD), and can be written in terms of spatial frequency as
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∈ CQ×1. (7)

At the IRS, b
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vector having spatial frequencies defined as µ
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are the azimuth AoA and the elevation AoA, respectively.

This can be further written as the Kronecker product between
two steering vectors as [13]
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The IRS transmission steering vector, b(irs)H
tx (µ

(l1)
irsD

, ψ
(l1)
irsD

),
is defined similarly. The IRS phase-shift vector is defined
as st =

[
ejθt , · · · , ejθN,t

]T ∈ CN×1, where θn,t is the
phase-shift of the nth IRS element at the tth time slot. Also,
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∈ CL2×1 represent the

path loss and fading components of the BS-IRS and IRS-UE
channels, respectively. We can compact the notation for G and
H as

G = ArxD(α)BH
tx ∈ CM×N , (9)

H = BrxD(β)AH
tx ∈ CN×Q, (10)

where Arx and Brx are the steering matrices defined as
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[
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with Btx and Atx being defined in similar manner.

III. PILOT-BASED PARAMETER ESTIMATION

In this section, we describe the proposed tensor-based
methods for channel parameter estimation, namely
Tucker-ALS as in Alg. 1, and Tucker-HOSVD as in
Alg.2. The main idea is to exploit the geometric structure of
the involved channels by using a tensor approach.

A. Tensor-Based Parameter Estimation

In this section, we formulate a tensor-based approach to
estimate the channel parameters. Using vec(ABC) = (CT ⊗
A)vec(B) and vec(AD (b)C) = (CT ⋄A)b in (1), yields

yt = vec (IMGD(st)Hzt) + vt ∈ CM×1,

= (sT
t ⊗ zT

t ⊗ IM )vec(HT ⋄G) + vt.

Collecting the signals during the T symbol periods yields

y =
[
yT
1 , · · · ,yT

T

]T
,

= [(S ⋄Z)T ⊗ IM ]vec(HT ⋄G) + v,

= Ω u+ v ∈ CMT×1, (11)

where S = [s1, · · · , sT ] ∈ CN×T , Z = [z1, · · · , zT ] ∈
CQ×T are matrices collecting the IRS phase-shifts and pilots,
Ω = (S ⋄ Z)T ⊗ IM ∈ CMT×MQN , u = vec(HT ⋄ G) ∈
CMQN×1, and v =

[
vT
1 , · · · ,vT

T

]T ∈ CMT×1 is the AWGN
noise term. From (11), we obtain the following LS problem

û = arg min
u

||y −Ωu||22 , (12)

where the solution requires T ≥ QN and is given by

û = Ω†y ∈ CMQN×1. (13)

Let us define R = unvecMQ×N (û) ≈ HT ⋄ G ∈ CMQ×N ,
where the approximation is exact in a noiseless scenario. Using
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Fig. 2: Proposed Tucker-based model.

(9) and (10), while applying property (AC) ⋄ (BD) = (A⊗
B)(C ⋄D), we have

R ≈ [A∗
tx D(β)BT

rx
] ⋄ [Arx D(α)BH

tx ],

≈ (A∗
tx ⊗Arx)[(D(β)BT

rx
) ⋄ (D(α)BH

tx )],

≈(A∗
tx⊗Arx)[D(β)⊗D(α)](BT

rx
⋄BH

tx ). (14)

Defining f = β ⊗α ∈ CL1L2×1, (14) can be expressed as

R ≈ (A∗
tx ⊗Arx)D(f)P T

B ∈ CMQ×N , (15)

where PB = (BT
rx
⋄ BH

tx )
T ∈ CN×L1L2 is the IRS geometry

information. Note that D(f) ∈ CL1L2×L1L2 can be viewed as
the 3-mode unfolding of the tensor F ∈ CL1×L2×L1L2 , i.e.,
D(f) = [F ](3). The tensor F is given by [14]

F =
(
I3,L2 ⊗

2,3
2,3 I3,L1

)
×3 f

T ∈ CL1×L2×L1L2 , (16)

where I3,L2
and I3,L1

are identity tensors and ⊗2,3
2,3 is the

selective Kronecker product (SKP) [14], from which we
arranged (15) following a third-way Tucker tensor structure
R ∈ CM×Q×N , as shown in Fig. 2, in terms of n-mode
product as

R ≈ F ×1 Arx ×2 A
∗
tx ×3 PB , (17)

with the matrix unfoldings of R given by

[R](1) ≈ Arx [F ](1) (PB ⊗A∗
tx)

T ∈ CM×QN ,

[R](2) ≈ A∗
tx [F ](2) (PB ⊗Arx)

T ∈ CQ×MN ,

[R](3) ≈ PB [F ](3) (A
∗
tx ⊗Arx)

T ∈ CN×MQ.

Consequently, the estimation of Arx , Atx , PB and F consists
of solving the following problem

{
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F
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which can be performed by means of the well-known ALS
algorithm [15] or the HOSVD algorithm [16].

B. Tucker ALS

From (17) we can derive an iterative solution based on the
well-known ALS algorithm [15]. Here, the algorithm consists
of an estimate Arx , Atx , PB , and F in an alternating way by

Algorithm 1 ALS
Require: Tensor R

1: while ||e(i)− e(i− 1)|| ≥ δ do
2: Find a LS estimate of Arx with (23).
3: Find a LS estimate of Atx with (24).
4: Find a LS estimate of PB with (25).
5: Find an estimate of f with (26).
6: Build F with (16).
7: Repeat until convergence.
8: end while
9: return R̂ = F̂ ×1 Ârx ×2 Â

∗
tx ×3 P̂B

iteratively solving the following cost functions

Ârx = arg min
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T
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f̂ = arg min
f
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∣∣∣∣∣∣2
2
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where f is related to the diagonal elements of [F ](3) and its
expression is derived by applying vec(AD (b)C) = (CT⋄A)b
to [R](3). The solutions for (19)-(22) are respectively given by

Ârx = [R](1)

[
[F ](1) (PB ⊗A∗

tx)
T
]†
, (23)

Âtx = [R](2)

[
[F ](2) (PB ⊗Arx)

T
]†
, (24)

P̂B = [R](3)

[
[F ](3) (A

∗
tx ⊗Arx)

T
]†
, (25)

f̂ =
[
(A∗

tx ⊗Arx)⋄PB

]†
vec([R](3)), (26)

with each solution requiring that QN ≥ L1, MN ≥ L2,
MQ ≥ L1L2, and NMQ ≥ L1L2. These four conditions
are related to the existence of the pseudoinverses of the LS
estimates Arx , A∗

tx , PB , and f , respectively. The proposed
ALS algorithm consists of four iterative and alternating update
steps that follow the LS solutions (23)-(26). At each update,
the reconstruction error is minimized according to one given
factor matrix by fixing the other matrices to their estimation
obtained at the previous update. This procedure is repeated
until the convergence is acknowledged, which happens when
the reconstruction error, given by e(i) = ||R − R̂(i)||2F,
achieves ||e(i) − e(i − 1)|| ≤ ϵ and ϵ is the threshold
parameter with R̂(i) being the reconstruct tensor model at
the ith iteration. In this work, we initialize the factor matrices
randomly and the convergence threshold is set to ϵ = 10−5.
It is worth noting that our solution using the ALS is not
unique although, after the convergence, the intrinsic scaling
and permutation ambiguities disappear on the estimated tensor
model R̂ = F̂ ×1 Ârx ×2 Â

∗
tx ×3 P̂B .

C. Tucker HOSVD

Considering the Tucker model in (17), we can also estimate
its factors by finding a multi-linear rank (L1, L2, L1L2)
approximation to R. This can be done by means of the
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Algorithm 2 Tucker HOSVD
Require: Tensor R

1: Define the singular value decomposition (SVD)s of [R](1),
[R](2), and [R](3) with (27)-(29).

2: Compute the estimation of matrices Arx , Atx , and PB with (30).
3: Compute the estimation of f = vec(F) with (31)
4: Reconstruct F̂ with (16).
5: return R̂ = F̂ ×1 Ârx ×2 Â

∗
tx ×3 P̂B

TABLE I: Algorithm computational complexity

Algorithm Computational Complexity
LS (13) O((MQN)2)
KRF [8] O(MQN)

Tucker ALS O(MQN [ALSiter(
L2

1
M

+
L2

2
Q

+
(L1L2)

2

N
+ (L1L2)2)])

Tucker HOSVD O(MQN(L1 + L2 + L1L2 + (L1L2)2))

state-of-art truncated HOSVD algorithm. This algorithm
consists of computing multiple singular value decompositions
(SVDs), one for each unfolding of R, as follows

[R](1) = U (1)Σ(1)V (1)H, (27)

[R](2) = U (2)Σ(2)V (2)H, (28)

[R](3) = U (3)Σ(3)V (3)H. (29)

The estimates of the steering matrices Arx , Atx , and PB are
found from the dominant L1, L2, and L1L2 left singular
vectors of [R](1), [R](2), and [R](3), respectively

Ârx = U
(1)
.1:L1

, Âtx = U
(2)
.1:L2

, P̂B = U
(3)
.1:L1L2

. (30)

Finally, an estimate of the core tensor in (17) is obtained as

f̂ =
[
(Â∗

tx ⊗Ârx)⋄P̂B

]†
vec([R](3)). (31)

Similar to the ALS solution, the HOSVD is not unique once
any transformation applied to the core tensor does not change
the tensor fit [16] except in the case where the core tensor is
known [17].

D. Computational Complexity

In Table I, we describe the computational complexity for
the selected benchmark algorithms, LS (13) and KRF [8],
and our proposed solutions, ALS and HOSVD. Consider that
the pseudo-inverse of a matrix A ∈ CI×J , with I > J ,
and its rank-R SVD approximation have complexities O(IJ2)
and O(IJR), respectively. Since the design of Ω at (13)
is orthogonal, we have Ω† = ΩH which lower the cost of
the pseudo-inverse computation. The KRF [8] estimates the
combined channel, R = HT ⋄G, by finding estimates of both
G and H that solves a set of N rank-one approximations
using the SVD. Regarding the proposed algorithms, the
ALS computes 4 pseudo-inverses (23)-(26) along ALSiter
iterations until convergence, while the HOSVD involves 3
SVDs (27)-(29) and a pseudo-inverse (31).

IV. SIMULATION RESULTS

We evaluate the performance of the proposed tensor-based
algorithm by comparing it with the reference parameter
estimation method based on the KRF [8]. The pilot matrix

Z ∈ CQ×T is designed as a Hadamard matrix, while a discrete
Fourier transform (DFT) is adopted for the IRS phase-shift
matrix S. The angular parameters ϕ(l1)bs and ϕ(l2)ue are randomly
generated from a uniform distribution between [−π, π] while
the IRS elevation and azimuth angles of arrival and departure
are randomly generated from a uniform distribution between
[−π/2, π/2]. The fading coefficients α and β are modeled
as independent Gaussian random variables CN (0, 1). The
parameter estimation accuracy is evaluated in terms of the
normalized mean square error (NMSE) given by

NMSE(R) = E


∣∣∣∣∣∣R(m) − R̂(m)

∣∣∣∣∣∣2
F∣∣∣∣R(m)

∣∣∣∣2
F

 ,

with R = (HT ⋄G) being the estimated channel at the mth
experiment, M = 104 being the number of Monte Carlo
experiments, and σ2

V is the noise variance. Unless otherwise
stated, the training SNR is 30 dB, the Rician factor of the LOS
channel is KG = 10 dB, and the Rician factor of the NLOS
channel is KH = −10 dB. At Figs. 3, 4, and 7 we assume
{M = 4, Q = 4, L1 = 1, L2 = 4, N = 16, and T = 64}, at
Fig. 5 we assume {M = 8, Q = 8, N = 16, and T = 128},
and finally at Fig. 6 we assume {M = 8, Q = 8, L1 = 2, L2 =
2, and T = 8N}.

In Fig. 3, we show the impact of the Rician factors, KG and
KH , on the NMSE performance associated with the estimation
of the combined channel R = HT ⋄ G, for the proposed
algorithms and the benchmark KRF [8]. The performance
improvements with increasing values of the Rician factor
come from the fact that as KG and KH increases, both
channels are dominated by a LOS component, which happens
because the channel approaches a unitary rank and the noise
rejection coming from the SVD. We can also see that the
proposed algorithms outperform the classic LS (13) and the
state-of-the-art KRF [8] algorithms by approximately 10 dB
and 5 dB, respectively. Moreover, the ALS performance is
better than that of the HOSVD in about 1 dB. In Fig. 4, we
evaluate the NMSE performance as a function of the training
SNR and verify the same gains as the evaluation of the NMSE
in terms of the Rician factors. In all considered methods, we
observe that the NMSE decreases with SNR linearly.

In Fig. 5, we evaluate the number of iterations required
by the proposed ALS algorithm to converge as a function of
the SNR for a varying number of paths, L1 and L2. In this
figure, we define ϵ = 10−5 as the target convergence criterion,
meaning that the algorithm convergence is declared when the
error between consecutive iterations is less than ϵ. As expected,
in the low SNR region the ALS algorithm takes more iterations
to achieve convergence as the total number of components,
i.e., the product L1L2, increases. At the high SNR region,
the required number of iterations is the same. In Fig. 6, we
observe that, as the number of reflecting elements N increases,
fewer iterations are needed for convergence. This is linked to
LS (13) since, if N increases, we sense the channel longer
because of condition T ≥ QN .

In Fig. 7, we analyze the computational complexity of
the benchmark algorithms, LS (13) and KRF [8], and the
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Fig. 7: Computational complexity of the proposed solutions and the
benchmark algorithms LS (13) KRF [8].

proposed algorithms, ALS and HOSVD, for fixed parameters
M,Q,L1, L2 while varying N according to Table I. To
compute the cost of the KRF [8], the ALS, and the HOSVD,
we take into account the extra cost of the LS (13) step, which is
the most complex operation of the competing and our proposed
solutions (see Table I). We observe that the competing LS and
KRF [8] algorithms have approximately the same cost as the
proposed ALS and HOSVD solutions.

V. CONCLUSIONS

This paper proposes two tensor-based channel parameter
estimation algorithms in IRS-aided MIMO communications.
From our simulation results, we observed that proposed ALS
and HOSVD algorithms outperform both the classic LS and
the state-of-the-art KRF algorithms in terms of NMSE by
approximately 10 dB and 5 dB, respectively. The performance
gap between the proposed solutions is small with the ALS
algorithm having the best performance in terms of NMSE
only. Regarding the computational complexity, the proposed
ALS and HOSVD solutions have approximately the same
complexity as the benchmark ones, namely, the LS (13) and
the KRF [8] methods.
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