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Abstract— Time Sensitive Networking (TSN) provides high
performance deterministic communication using time scheduling.
In theory, the rigor of a TSN schedule is the key to achieving
deterministic communication; however, real devices are prone to
errors. TSN-based applications require both fault-tolerance and
end-to-end latency guarantee. This paper identifies the limitations
of the TSN scheduling method, enhancing the simulation model
NeSTiNg to enable fault-injection and integrating it to the
schedule generator tool-chain TSNsched.
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I. INTRODUCTION

Modern industrial systems have several traffic types, such
as, time-critical, best-effort, and audio/video. Each of these
traffic flows have different priorities and requirements making
the network design a complicated task [1]. More and more
fields of the industry require deterministic communication,
including automotive, aviation, and smart factories. Thus, new
methods for network design and communication need to be
applied [2].

Time-Sensitive Networking (TSN) is a set of standards
developed by IEEE 802.1 Task Group [3]. The objective
of TSN is to achieve deterministic communication with low
latency and jitter. To achieve this, TSN shapes the network
traffic using: time synchronization (IEEE 802.1ASRev), packet
preemption (IEEE 802.1Qbu), and traffic scheduling through
time (IEEE 802.1Qbv) [4]. The Time Aware Shaper (TAS,
IEEE 802.1Qbv) is the scheduling technique proposed by
TSN. To create a TSN schedule, the network details must be
specified in advance, so the TAS can calculate and generate the
network schedule for each traffic class. Since all the schedule
is pre-calculated, static values are used to represent relevant
parameters, such as packet size, periodicity, number of devices,
route, transmission and processing delay

When we work with real scenarios, however, devices may
not work in a constant stable manner as they can present errors
and inconsistencies. For example, if a TSN end-device or
switch fails, all the scheduling and latency guarantee is at risk.
Thus, fault-tolerance aspects must be taken into consideration
when creating a TSN schedule.

In order to identify and evaluate the robustness limits of
TSN scheduling, this paper uses TSNsched [5] to generate
the network schedule according to TSN constraints, and the
simulation model NeSTiNg [6] to simulate an environment
where the devices may present issues and analyze the behavior
of the network.
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The main contributions of this paper are:
• Simulation Model Enhancement: We customized the

simulation model NeSTiNg, enabling fault-injection. This
enhanced simulation model allows the user to emulate
different faults and easily configure their associated pa-
rameters and probabilities.

• Tool-Chain Integration: We implemented the faults on
NeSTiNg and integrated with the TSNsched tool-chain.
The faults can be added automatically using TSNsched
output and be loaded directly to NeSTiNg.

• TSNsched Validation: We validate TSNsched output in
different scenarios, analyzing the effects of failures and
the tool limitations.

The outline of the paper is as follows: Section II presents
a brief overview of the Time Aware Shaper, tools used in
the study, as well as the related work. Section III goes in
depth on the possible network faults and how we enhanced the
simulation model to emulate these faults. Section IV evaluates
and compare the network performance with and without faults.
Section V concludes the paper and points to direction of future
work.

II. BACKGROUND

The purpose of TSN is to allow end-to-end deterministic
communication, providing transmission with latency and jit-
ter restrictions. In order to keep this delay under a certain
limit, TSN makes use of several mechanisms in the form
of standards. One of the main components of TSN is the
Time Aware Shaper (TAS) [7], this mechanism is responsible
for scheduling traffic into eight different priorities. Fig. 1
illustrates how this mechanism works. Each port on a TSN
switch have eight priority queues and eight forwarding gates.
When a packet arrives at a switch, it is processed and goes
through a filter, often called the "Switching Fabric". This
Priority Filter will determine the packet priority (attribute
found in the packet header) and then direct it to its particular
Priority Queue.

Each priority queue follows a FIFO (First In First Out)
policy, but packets from that queue can only be sent when their
respective forwarding gate is open. What determines the status
of the forwarding gate is the scheduling table used by that
gate (GCL - Gate Control List). S This scheduling mechanism
aims to protect and ensure the transmission periods of different
priorities. But due to the strict constraints of TAS and the fact
the schedule set on the GCL is pre-calculated, the end-to-end
latency cannot be guaranteed if a device were to present faults
or a new traffic flow were introduced [8].

A. Tools

TSNSCHED [5] is an application that uses the Z3 SMT
(Satisfiability Modulo Theories) Solver [9] to generate the
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Fig. 1. Time-Aware Shaper. [2]

network schedule given a configuration file with the network
topology, latency and jitter requirements as input. This tool
is used in this paper to generate the schedule needed for our
experiment.

OMNeT++ (Objective Modular Network Testbed in C++)
[11] is an object-oriented event-based simulator, usually used
to build network simulation models, having an IDE based in
the Eclipse platform.

The INET-Framework [10] is an open source set of modules
and protocols for OMNeT++ capable of simulating wired,
wireless and mobile networks.

NeSTiNg [6] is a simulation model for OMNeT++, using
the INET-Framework and enhancing it adding components to
enable TSN simulation. In the next section we go through or
contributions to the simulation model, explaining the compo-
nents added to enable simulation of TSN networks in unstable
scenarios. In a previous work, we performed a preliminary
analysis of simulations scenarios using theses tools [16].

B. Related Work

Emergency traffic have the highest priority and may oc-
cur sporadically without prior notice. The support for asyn-
chronous emergency traffic in TSN was first introduced by
[13]. In this work, the authors offer a solution in the form
of a Protection Band working as a fail safe mechanism.
The paper [14] is an extension of this work, where the
authors implement their solution on the Time Aware Shaper.
Even if both papers presented a solution to the asynchronous
emergency traffic, both works have a similar flaw. The authors
take in consideration single-upsets in the network schedule, so
if multiple faults were to happen at the same time, the solution
proposed could not be applied.

Similar to our work, [15] uses simulation tools to check
the limitations of TSN. More precisely, the authors show
the limitations of the TSN packet preemption standard and
propose a new preemption model to improve the maximum
response time of high priority frames. A shortcoming of
this paper is the narrow view for improvements, the frame

preemption model have a limit to its usefulness and other faults
should be taken into consideration.

Most of the studies found in the state of the art consider
TSN faults from the scheduling perspective. Narrowing their
point of view to the introduction of new traffic flows and send
window optimization. Our work approach TSN shortcomings
considering failures in network devices, allowing a broader set
of faults and experiments. Moreover, our work is integrated
to the TSNsched tool-chain, enabling schedule validation and
fault injection in a semi-automatic way.

III. FAULT-TOLERANCE ON TSN
The main goal of TSN is to provide high performance

deterministic communication in a variety of applications, such
as automotive and smart factories. Being capable to attend the
requirements of different types of traffic, increase the demand
for reliability.

TSN have sub-standards dedicated to achieve this reliability.
We highlight the redundancy management standard IEEE
802.1CB, the flow control and reservation IEEE 802.1Qca,
and the flow filtering and policing IEEE 802.1Qci. These three
standards work together to decrease the latency and packet loss
by duplicating packets and sending them in alternative routes,
having in mind the elimination of duplicated frames at the
destination [12].

Even though TSN has a certain level of fault-tolerance,
these techniques can only work if a network is in prime
conditions. If the network present a certain level of instability
(e.g. network overload), the latency guarantee will be lost.

A. Network Faults

After taking into consideration the scheduling mechanisms
and fault-tolerance build into TSN, we concluded the follow-
ing faults represent the most common real-life scenarios of
inconsistency for a TSN network [12].

• Switch Overload: This fault happens when a switch
takes too long to process the packet, making the packet
arrive late at the priority queue and missing its send
window.

• Link Failure: This error happens when a packet is
dropped at the switch port. This occurs when a switch
have a link failure making the transmission unreliable.

• Transmitter Failure: This error happens when a trans-
mitter send a packet with wrong header. The header of a
TSN packet have valuable information (e.g. priority), so
if a transmitter send a packet with a wrong header, the
information may never reach right receiver or disturb the
traffic flow of other priority.

• Receiver Failure: This fault happens when a receiving
device fails to sort the received packets in the right order,
dropping useful packets by mistake.

B. Simulation

To analyze the scenarios where TSN robustness is pushed
to its limits, we made modifications to the simulation model
NeSTiNg, creating new modules to emulate faults. 1

1https://github.com/piuMoreira/nesting-nestsched
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To emulate the Switch Overload fault, we created a switch
with a new delayer. On NeSTiNg, the switch delayer works as
a mean to emulate the time it takes to process the packet. So
we created a new delayer and turned the static variable used
to define the processing delay into a seed to a probability
distribution. The probability distribution chosen for this work
was the Uniform Distribution, other distributions can be found
on our enhanced simulation model, leaving this choice for the
user.

Similarly, the Link Failure fault was emulated by creating
a new module for the switch ports. Whenever a packet arrives
at the switch port, a function with a probability distribution
is ran using the seed provided to determine if the packet is
received or not.

The end devices in NeSTiNg use the same module to
generate and receive traffic. To emulate the Transmitter Failure
the traffic module uses a probability distribution to check
if it will send the packet with the right information. When
receiving a packet, he module will check if the information
on the header are correct and will also use a probability
distribution to check if the packet will be dropped or not,
emulating the Receiver Failure.

IV. EXPERIMENTS AND EVALUATION

In this section, we describe the simulation setup, going
through the network specification and expected latency. Then
we introduce the faults on the network and evaluate the impact
they had on the overall latency.

A. Simulation Setup

We use the tool TSNsched to generate the schedule for
the network depicted in Fig. 2. The chosen topology have
10 end-devices, 4 switches and 10 traffic flows with different
priorities, packet length and periodicity. The details about the
network can be found on Table I. The Start and End columns
represent the transmitter and receiver devices. The Priority
column specifies the priority of that flow. Finally, the columns
Size and Interval inform the length that flow packages and the
periodicity which they are sent.

TABLE I
TRAFFIC FLOW DETAILS.

Start End Priority Size Interval

flow1 dev0 dev5 0 500 B 400 µs
flow2 dev1 dev3 2 300 B 800 µs
flow3 dev3 dev1 1 300 B 800 µs
flow4 dev2 dev0 2 300 B 500 µs
flow5 dev4 dev6 2 400 B 800 µs
flow6 dev6 dev4 6 600 B 800 µs
flow7 dev5 dev0 6 700 B 500 µs
flow8 dev7 dev9 0 500 B 800 µs
flow9 dev9 dev7 0 300 B 800 µs
flow10 dev8 dev0 7 800 B 500 µs

TSNsched uses the network details as input to calculate
the traffic schedule. This output is given as a JSON file,
which is not supported by OMNET++. The process to translate
the schedule to a simulation tool is tedious and error prone
when done manually; thus we used a TSNsched plugin called
Nest-Sched [16] to generate the simulation files required by

NeSTiNg automatically. A visual representation of the tool-
chain can be found in Fig. 3.

Fig. 2. Simulated Network.

Fig. 3. Tool-Chain.

Fig. 4. Network Expected Latency.

B. Fault Injection
With the required files loaded into the simulation tool,

we are able to execute and validate the schedule generated
by TSNsched. The graph depicted in Fig. 4 represents the
network latency if it were working in perfect conditions. As
you can see, all the flows remain stable, meeting the specified
constraints.

Now that we have the schedule and the necessary con-
figuration files for the simulation, we can inject the faults.
As mentioned in Section 3, new components were created
to enhance NeSTiNg simulation model, each new component
uses a uniform probability distribution to determine if it will
behave normally or present issues. Thus, the user needs to
specify the fault probability of said components.

OMNET++ simulation tool uses initialization files to specify
device parameters. Using this, we can easily specify the fault
probability of the simulated scenario. An example of this
configuration can be seen in Fig. 5.
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Fig. 5. Fault Configuration.

Fig. 6. Switch Overload.

1) Switch Overload: Using the new switch model, we
are able to simulate a scenario were the network switches
experience an overload, taking more time to process packets,
sending them to the priority queue with delay.

Each switch of the network can have different probabilities
assigned to them. When the switch fault is triggered, the
received packet will take longer to arrive at the priority queue,
and this delay range can vary, according to a seed given by
the user in the initialization file.

For the first fault scenario, we set the delay probability of
all switches to 1%, and the delay range of these switches vary
from 300 µs to 700 µs. The resulting latency can be seen in
Fig. 6.

The harmful strictness of the TSN scheduling mechanism
is shown on this scenario. Applying a fault probability of 1%
to the switches was enough to disrupt the entire schedule,
increasing the overall latency and jitter.

The package size, network bandwidth and switch processing
delay are used as input to create the network schedule, and
these parameters are seen as static values. Thus, if there is any
variation to these parameters at run time, the TAS will not be
able to work around it since the GCLs are already loaded
and strictly followed. Now, let’s say the network stability has
worsened and all the switches are operating under critical
conditions. Instead of a cascading delay, the affected flows
will present a worse variation, as depicted in Fig. 7.

2) Link Failure: To emulate the link failure, the fault
injector uses the new switch port model, which have a fault
probability associated to it. When the fault is triggered, that
port connection is severed, dropping any packet that is suppose
to use it.

For this scenario, we injected the link failure fault on one
port of the central switch, more specifically the port connecting
Switch2 to Switch0. As we can see in Fig. 8, after some
time, the fault is triggered and the flows directed to dev0 are
interrupted. This network topology (Fig. 2) was used to show

Fig. 7. Switch Overload. Critical Case

Fig. 8. Link Failure

that TSN faults can be introduced even at the early stages of
modeling. By default, TSN have a redundancy standard (IEEE
802.1CB) as a fault-tolerant measure. But this standard cannot
be used to its full potential if the network topology does not
offer multiple paths which a packet can be sent.

3) Transmitter/Receiver Failure:: The emulation of these
faults are similar. The NeSTiNg simulation model uses the
same component to transmit and receive traffic, so we injected
the fault in this component.

Fig. 9 depicts the network latency after injecting this fault.
As we can see, none of the flows had latency variation, but
the gaps on flows 4, 7 and 10 represent failure to transmit or
receive a packet. This means the end device will not receive
all the packets, resulting in information loss.

C. Latency

The latency results of all scenarios are summarized in
Table II. It shows the network expected performance and the
results after the fault injection. As mentioned previously, the
only scenario where the latency was impacted is the Switch
Overload. This is caused by the unexpected delay added
throughout the path.

In the scenarios where there was packet loss, the latency
remains stable, this happens because the simulation tool only
uses the received packets in the latency calculation; so if a
package is lost along the way it will not be counted. If we take
in consideration the lost packets, the latency experienced is
Infinite, since the packet will never reach the destination. Even
though the other scenarios do not present latency variation, the
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TABLE II
LATENCY RESULTS.

Scenario
Expected Result Switch Overload Link Failure Transmitter/Receiver Failure

Latency (µs) Jitter (µs) Latency (µs) Jitter (µs) Latency (µs) Jitter (µs) Latency (µs) Jitter (µs)
Flow1 14.008 0 557.097 290.302 14.008 0 14.008 0
Flow2 5.792 0 5.792 0 5.792 0 5.792 0
Flow3 5.792 0 5.792 0 5.792 0 5.792 0
Flow4 12.592 0 497.285 332.547 12.592 0 12.592 0
Flow5 7.392 0 7.392 0 7.392 0 7.392 0
Flow6 10.592 0 604.14 352.913 10.592 0 10.592 0
Flow7 17.804 0 411.743 205.445 17.804 0 17.804 0
Flow8 8.992 0 8.992 0 8.992 0 8.992 0
Flow9 5.792 0 160.63 318.643 5.792 0 5.792 0
Flow10 28.601 0 493.248 147.297 28.601 0 28.601 0

Fig. 9. Transmitter/Receiver Failure

traffic flows are still being affected since the packets are not
arriving at their destinations and information is lost.

V. CONCLUSION AND FUTURE WORK

In this paper, we extended the simulation model NeSTiNg to
support fault-injection. Using this enhanced simulation model
and the automated schedule generator TSNsched, we were
able to analyze how these faults affect the TSN schedule
and reliability. There are different types of faults and each
of them can affect the network in a different manner. When
we speak about TSN, the most noticeable fault is related to
schedule disruption, but network robustness goes beyond that.
Traffic planning and network modeling are also critical parts,
as shown in this paper.

TSN have the minimum fault-tolerance mechanisms, relying
on network planning, controlled and stable scenarios. The re-
sults found in this paper show that even with those mechanisms
is still possible to disrupt the well crafted schedule. Most
of the fault-tolerant studies found on the state-of-the-art deal
with run-time solutions. The re-creation of the schedule and
configuration on devices may be costly. Thus, using the results
found on this paper, our next step is to come up with new
fault-tolerant mechanisms for TSN on design-time, enhancing
the schedule generator TSNsched and integrating fault-tolerant
aspects to the open-source tool chain.
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