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Abstract— Public health faces significant challenges in com-
bating the Aedes aegypti mosquito, which still threatens the
Brazilian population. Despite awareness campaigns and control
measures, the incidence of diseases such as dengue, zika and
chikungunya is still high. However, technological advances have
enabled the development of devices capable of detecting female
mosquitoes Aedes aegypti, the main transmission vector of these
diseases. The use of IoT systems (Internet of Things) and weather
stations can assist researchers in controlling the population of
these insects, enabling the monitoring of high-risk areas. This
article presents an intelligent system that uses Computer Vision
to detect Aedes aegypti mosquitoes. The objective of this article
was to develop an IoT system architecture using the You Only
Look Once v7 (YOLOv7) algorithm, which provides a superior
solution compared to existing methods for real-time detection of
the Aedes aegypti mosquito. By combining YOLOv7’s real-time
detection capabilities with the connectivity and intelligence of the
IoT system, the proposed solution offers a significant advantage.
Furthermore, the integration of the IoT architecture allows for
continuous data collection and the implementation of advanced
analytics, such as machine learning, enabling continuous impro-
vements in the accuracy and efficiency of the detection system.
This adaptive approach, coupled with real-time responsiveness,
makes the proposed solution highly effective and promising in
combating Aedes aegypti.
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sion

I. INTRODUCTION

Dengue is an infectious viral disease transmitted by the
Aedes aegypti mosquito, which is a public health problem in
Brazil. Since the 1980s, the country has faced outbreaks and
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epidemics of the disease. In 2019, for example, more than 1.5
million cases were reported in the country [1] with more than
750 deaths. The problem is especially serious in the tropical
and subtropical regions, where the climate is favorable for the
proliferation of the transmitting mosquito [2].

In Brazil, the fight against Dengue has several available
solutions, one of the main strategies being the elimination of
possible breeding grounds of standing water. In addition, it
is crucial to make the population aware of the importance
of identifying and eliminating mosquito breeding sites in
their own homes, as the mosquito has a flight range of
approximately 800 meters [3]. Thus, residents must understand
that mosquito control is not limited to the surroundings of their
homes, but involves the collaboration of the entire community.

It is essential to adopt preventive measures throughout the
region to reduce the spread of the dengue mosquito and
prevent disease. It is a collective responsibility that involves
the population and the government [4]. Medical treatment is
based on supportive measures to control symptoms and prevent
complications, as there is no specific cure for illness caused by
the virus. Early diagnosis and adequate treatment are essential,
including hospitalization in severe cases [5].

The scientific literature encompasses numerous studies ad-
dressing the application of IoT (Internet of Things) in mo-
nitoring and surveillance of urban and rural pests. These
researches extensively explore smart devices equipped with
internet-connected traps, including investigations of solutions
and commercial prototypes [6]. By examining the published
literature, it is possible to identify approaches that are based
on the use of optoelectronics sensors to classify insects based
on the frequency of wingbeats during flight [7], flying insect
recognition and counting systems that are based on vision [8].

Computer Vision (CV) is a subfield of artificial intelligence
that is currently used to automate various tasks that require the
use of vision. In addition, several algorithms that make use of
CV have already been proposed in the literature, including
YOLO. Despite the development of the eighth version of the
algorithm, YOLOv7 still stands out as an excellent solution
for real-time detection when compared to other algorithms [9].
The YOLOv7 model is an improved version over previous ver-
sions like YOLOv4, incorporating a pre-processing technique
from YOLOv5 to improve the identification of smaller objects.
The architecture features the E-ELAN (Extended Efficient
Layer Aggregation Network) block, which has enhanced the
networks learning capability through cardinality expansion,
scrambling, and merging. Group convolution is employed to
increase the channel and cardinality of the computation block.

The objective of this study was to propose an update and



improvement of existing insect surveillance systems, through
the implementation of a solution based on disruptive tech-
nologies, such as the IoT, using the YOLOv7 algorithm for
detection. This solution uses a system based on CV and IoT
to automatically detect and count the number of Aedes aegypti
mosquitoes, responsible for epidemic outbreaks. Through the
localization and classification of mosquitoes through CV, data
is sent remotely by LoRa to a cloud platform, allowing its
visualization, storage and subsequent analysis. The objective is
to mitigate the epidemiological outbreak of the Aedes aegypti
mosquito, making detection more efficient and effective.

This article is organized into five sections: Section II reviews
the literature on techniques for real-time detection of the Aedes
aegypti mosquito; Section III describes the proposed system
architecture in detail, including the model used; Section IV
presents the experimental validation results; and Section V
concludes the article and suggests future research directions.

II. THEORETICAL BACKGROUND

In recent years, the use of CV and machine learning (ML)
techniques for the identification, detection and classification of
Aedes aegypti mosquitoes has been widely studied. IoT, intelli-
gent traps and robotics, allowed the development of automated
systems that aim to efficiently detect and control the infestation
of these mosquitoes, contributing to epidemiological research.

In article[9], researchers investigate the use of sensors
and unimodal classifiers for accurate identification of Aedes
aegypti mosquitoes. In article [7], the authors evaluate the sen-
sitivity and noise of an optoelectronic sensor used in mosquito
monitoring, emphasizing the importance of an effective and
reliable detection system. The work [10] proposes a deep con-
volutional neural network-based approach for the classification
of Aedes albopictus mosquitoes, highlighting the potential
of deep learning techniques in the identification and control
of these disease vectors. The utilization of computer vision
(CV) systems and deep learning techniques has shown great
potential in the identification and classification of mosquito
species, such as Aedes aegypti, which is a vector for diseases
like dengue, Zika, and chikungunya.

The article "Computer vision system for automatic iden-
tification of potential Aedes aegypti mosquito breeding sites
using drones"explores the use of drones to identify mosquito
breeding sites [11], while articles [12], [13] highlight the
power of convolutional neural networks in image processing
and species classification. Furthermore, the article "Mapping
the spatial distribution and predicting the abundance of dengue
vectors using machine learning"presents a machine learning
approach to map the spatial distribution and predict the abun-
dance of dengue vectors, demonstrating the effectiveness of
these techniques in combating mosquito-borne diseases [14].

Otherwise, there are still limitations and challenges in
detecting Aedes aegypti mosquitoes through CV and ML, such
as the variation in mosquito appearance at different stages
of development and in different environments. In addition,
it is important to highlight that these automated systems are
complementary to traditional vector control methodologies and
should not replace them [14]. It is possible to envisage several

future applications of CV and machine learning for the control
of Aedes aegypti mosquitoes, such as automated detection
in smart traps and real-time monitoring of infestation areas.
However, it is necessary to continue to invest in research
and development of technologies in this field to overcome
limitations and improve the effectiveness of these systems.

Basically, CNNs consist of three types of layers: convolutio-
nal, clustering, and fully connected [15]. Convolutional layers
use filters to extract features from images, while clustering
layers perform spatial sampling to generate lower-resolution
versions of the convolutional layers. Finally, the fully connec-
ted layers act as classifiers, producing an n-dimensional matrix
that indicates the probability of the input pattern belonging
to a given class [15], [16], [12]. There are several CNN
architectures, with YOLO being one of the most used for
object recognition [17], [18], [19]. In the present work, YOLO
was used to form the proposed CV system.

III. MATERIALS AND METHODS

In this article, a solution based on IoT for real-time moni-
toring and detection of the Aedes aegypti mosquito using the
YOLO v7 algorithm is discussed. The architecture, illustrated
in Figure 1, consists of a Raspberry Pi 4 board with 8 GB of
RAM, responsible for processing and executing the YOLOv7
algorithm. The images captured by the camera are sent to
the Raspberry Pi board, where the CV algorithm identifies
the insect being detected in real-time. The data is processed,
stored, and then sent via serial communication to the ESP32
LoRa, which is handled and transmitted using the LoRaWAN
protocol to the LoRaWAN gateway configured in the ChirpS-
tack LoRaWAN® network server platform. LoRa technology
is a low-power radio frequency (RF) communication method
commonly used in situations that require low transmission ra-
tes and long distances. This technology is highly recommended
for implementation in IoT devices and applications that utilize
sensor networks [20].

Fig. 1: IoT Trap System architecture

The Figure 2 illustrates the architecture of YOLOv7, which
represents a significant evolution compared to previous ver-
sions [21]. This real-time object detection approach utilizes
deep convolutional neural networks to divide the input image
into a grid and then predicts the coordinates of bounding
boxes and the classes of objects present in each grid cell.



Fig. 2: YOLO architecture.

This architecture, characterized by its computational efficiency
and high accuracy, incorporates improvements such as the
utilization of CSPDarknet53 modules for feature extraction,
enhancements in the loss function, and the implementation of
attention mechanisms like Spatial Pyramid Pooling (SPP) and
Path Aggregation Network (PANet) to enhance robustness and
the model’s generalization capacity in complex and diverse
scenarios [22] The software development was divided into
sections for microcontrollers and cloud storage. The ESP32
LoRa microcontrollers used Arduino IDE, while Raspberry Pi
and the Radioenge gateway ran Rasbian OS. The open-source
ChirpStack LoRaWAN® platform was chosen for reliable and
secure cloud storage. The Node LoRa ESP32 served as a
low-power wireless communication solution, enabling data
transmission between sensor nodes and the LoRa gateway.

The LoRaWAN gateway is responsible for receiving the data
transmitted by the ESP32 LoRa and forwarding them to the
LoRaWAN server. This server, in turn, stores the received data
and sends automatic alerts in case of detection of mosquitoes
or infestation. This mosquito detection system is extremely
efficient and can be used in different environments such as
homes, schools, hospitals, parks, and other public areas. In
addition, it is highly customizable and can be adapted to meet
the specific needs of each monitored environment.

For the study, a dataset was built with images of different
species of insects, including Aedes aegypti, bees and butter-
flies. This set of images was obtained by merging the datasets
present in the Kaggle community. The resulting set has 7,673
images, 3,371 of the Aedes aegypti[23] class, 3,637 images of
a class of bees [24] and 665 of the class of butterflies [25].

To assess the generalizability of the detection model, the
data set was divided into training (70%), validation (20%) and
testing (10%) for each type of insect. As the sizes of the ima-
ges in the dataset were not uniform, an initial normalization

phase was performed to standardize all the photos to an image
with a resolution of 640×640 pixels. To complete the manual
labeling of each insect class, image data annotation software
was used [26]. After successfully labeling the images, text files
corresponding to each of the images are generated containing
the class and location information of the insect within the
image. To ensure that the bounding box comprises as little
of the background as possible, the images were labeled based
on the smallest bounding box surrounding the insects. Sample
images of the three types of insects are shown in Figure 3,
including bee, butterflies, and aedes-aegypti.

Fig. 3: Image annotation examples.

YOLO is trained in several steps, starting with collecting
a large amount of training data, which is pre-processed and
divided into training and validation sets.

There are three main matric’s for evaluate the model: (I)
box loss, (II) objectness loss, and (III) classification loss. The
box loss reflects the algorithms ability to accurately locate the
center of an object and predict its bounding box. Objectness
measures the probability that an object is present in a particular
region of interest, with high values indicating the likelihood of
an object’s existence. Classification loss indicates the model’s
ability to accurately predict the correct object class. The
precision, recall, and mean average precision of the model
improved quickly at the outset and reached a plateau after
approximately 50 epochs. Similarly, the box, objectness, and
classification losses of the validation data showed a sharp
decrease until epoch 50. To choose the best weights, we
utilized early stopping.

The neural network is initialized with random weights and
then fed with the training images. During training, the network
adjusts its weights to minimize the loss function, which mea-
sures the difference between the network’s predictions and the
true labels. This difference is calculated using a loss function
such as the cross-entropy loss function. The training process
is repeated several times, or epochs until the neural network



Fig. 4: Created graphs illustrating the changes in box loss, objectness loss, classification loss, precision, recall, and mean
average precision (mAP) for the training and validation sets over the course of training epochs.

learns to recognize objects of interest with high accuracy.
After training, the network is tested on a test set to assess its
accuracy. If accuracy reaches a satisfactory level, the network
is considered ready for use.

Epochs are an important concept in training neural
networks, including YOLO. Each epoch represents a complete
pass through the training data, during which the neural network
updates its weights based on errors made in the predictions.
The number of epochs needed to train a neural network
depends on the size and complexity of the dataset, as well as
the network architecture. In general, the larger the dataset and
the more complex the network, the more epochs will be needed
to achieve the desired accuracy. However, it is important to
balance the number of epochs with the risk of overfitting,
which occurs when the network fits too tightly to the training
data and loses the ability to generalize to new data. Therefore,
it is common to use techniques such as cross-validation and
hyperparameter adjustment to determine the ideal number of
epochs for neural network training.

IV. RESULTS ANALYSIS

In this section, an analysis of the results obtained during
the training of the computer vision model will be conducted
with the aim of detecting the Aedes aegypti mosquito in real-
time. The YOLOv7 algorithm was employed, which stood out
for its high efficiency and precision in image processing.The
loss function shown in Figure 4 can be decomposed into three
distinct components: the box loss measures the accuracy of
the predicted bounding box parameters, such as width and
height, as well as the offset from the center of the true object.
The objectness loss is calculated based on the probability of an
object being present in a given region of interest, with the aim
of improving the detection of objects against the background.
Finally, the classification loss evaluates the model’s ability to

accurately classify objects based on their features, such as
shape, color, and texture. By minimizing these losses during
training, the YOLOv7 algorithm can achieve high detection
accuracy and real-time performance.

Fig. 5: R-Curve result

The objectivity metric quantifies the probability of an object
being found in a given area, suggesting that an object is
within the visible region of the image. Figure 5 presents a
precision recovery curve that serves as a granular class-specific
performance indicator. By observing the PR curve, we can
conclude that the bee class had the best performance, reaching
a precision of 98.9%, and following the bee class the Aedes
aegypti class, which had a performance of 98.3%.

The butterfly classes showed a performance drop of 89.9%,
respectively, due to the smaller number of images available in



the dataset, which had only 665 images. In comparison, the
image set for Aedes aegypti and bees contained over 3,000
images each. Despite this, the architecture had a satisfactory
overall performance of 95.7%. Figure 5 shows the precision-
recall curve of the global space criterion for mosquito detec-
tion using the YOLOv7 algorithm. To facilitate evaluation, the
algorithm is able to detect almost all mosquitoes, even when
they are partially occluded. This is also illustrated in Figure
5, where the maximum recall rate is above 98.9%.

V. CONCLUSION

An advanced Convolutional Neural Network structure was
used to enable surveillance and population mapping of mos-
quitoes. After a careful evaluation, the general and specific
objectives were fully achieved. An efficient Aedes aegypti
and Bee detection algorithm was developed with YOLOv7.
To assess the accuracy of the algorithm, several metrics
were applied, including accuracy, recovery, F1 measures and
precision. The results were extremely positive, demonstrating
that YOLOV7 achieved an average accuracy of 95.7%. This
modern technology presents new possibilities for monitoring
and controlling the population of mosquitoes, in addition to
helping to prevent diseases transmitted by vectors.

Future work includes expanding the insect monitoring sys-
tem’s database by adding more species. Furthermore, a pro-
totype is being developed to analyze the behavior of different
insects in the area, with emphasis on the Aedes aegypti mos-
quito. The prototype will be powered by rechargeable batteries,
which will be charged through a system of photovoltaic modu-
les that includes a charge controller, temperature and humidity
sensors and an optoelectronic sensor capable of detecting the
sex of the mosquito by the frequency of its wingbeats. The
algorithm will also be updated to improve the effectiveness
of the system. Several smart traps will be strategically placed
around the city for field study. These systems will effectively
control the spread of the Aedes aegypti mosquito, which is
responsible for transmitting diseases such as dengue, zika
and chikungunya. These initiatives represent a significant step
forward in improving techniques for monitoring and studying
the lives of insects, in addition to contributing to the control
and reduction of diseases transmitted by insects. Our com-
mitment is to continue developing innovative technological
solutions to improve people’s quality of life and prevent
diseases transmitted by insects.
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