
XLI	BRAZILIAN	SYMPOSIUM	ON	TELECOMMUNICATIONS	AND	SIGNAL	PROCESSING	-	SBrT	2023,	OCTOBER	08–11,	2023,	SA> O	JOSE@ 	DOS	CAMPOS,	SP 

 

Impact of ADC Sampling Rate and Number of Bits on 
the Matched Filter Efficiency in Intrapulse LFM Radar 

André Krüger, Derek Nogueira, Renato Machado, Dimas Irion Alves, and Olympio Coutinho 
 

Abstract – This paper analyzes the effects of changing the 
sample rate and the number of bits of a linearly frequency-
modulated (LFM) pulse on a matched filter-based radar detector. 
For this purpose, a radar simulator with close to real parameters 
is used. Changes in the values of those variables are made 
separately and in combination, verifying their impacts. A 
reduction of the average sidelobe power and the compression gain 
was observed with an increase in the number of bits, stabilizing 
after the fourth bit. Regarding the sampling rate changes, the 
compression gain was not altered by its variation, unlike the 
sidelobe power. 
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I. INTRODUCTION  
Modern radars commonly employ pulse compression 

techniques to improve the signal-to-noise ratio (SNR) of the 
received signal [1]. This technique transmits a signal with 
intrapulse modulation and a known coding. The transmitted 
pulse has characteristics of long duration, low amplitude, and, 
consequently, low power, intending to have a high transmitted 
energy [2]. A widely used encoding is the linear intrapulse 
frequency modulation. Once in the receiver, the pulse is injected 
into a matched filter that, from the knowledge of the modulation 
code of the transmitted pulse, performs energy compression in 
time. This dramatically concentrates all the energy transmitted 
in one long pulse into a short interval [2]. This power 
compression produces an increase in the amplitude of the 
received signal. Thus, a significant improvement in SNR is 
obtained, considering that the noise present in the signal does not 
have the same modulation code matched to the filter. 

A current trend in the development of radar systems is the 
use of digital signal processing. Indeed, the best conditions of 
the number of bits and sampling rate are sought to maintain the 
fidelity of the desired signal compared to the analog one. This 
scenario suggests increasing the number of bits and sampling 
rate. On the other hand, considerations of cost, power 
consumption, system size, and complexity suggest reducing this 
sample rate and number of bits as much as possible. Then, 
analyzing the pulse compression efficiency against the number 
of bits and sample rate can help optimize these two important 
parameters of the digital signal processor. 

An analysis of the effects of the number of bits in an LFM 
signal after the matched filter has been done by [3]–[6]. 
Specifically, in [3], such an analysis was conducted on a signal 
generated by a digital radio frequency memory (DRFM) and 
found an increase in the level of the sidelobes when reducing the 
number of bits. On the other hand, [4] and [5] performed 
simulations of injecting an LFM signal directly into a matched 
filter. Both obtained a reduction of the average sidelobe power 
up to a certain number of bits. Although the focus in [6] is on 

mismatched pulse compression filters, the results of the sidelobe 
were similar to those obtained by other authors. Finally, 
regarding the sampling rate, according to the analysis presented 
in [7], it was found that the signal energy does not change with 
the modification of that parameter. 

However, no study has attempted to perform a cross-analysis 
of these variables. Thus, this paper initially presents a 
comparative analysis considering each parameter individually. 
Then, a study combining both variables and verifying their 
effects on the signal after the matched filter is performed. The 
results obtained in the individual analysis are close to those 
obtained by other authors. With an increase in the number of 
bits, the sidelobe power, as well as the compression gain, tends 
to decrease. With an increase in the sampling rate, the 
compression gain does not change, but the sidelobe level does. 
This makes that different combinations of these parameters 
deliver the same results. 

This paper is organized as follows. Section II discusses a 
theory of the matched filter and some particularities. Section III 
comments on the methodology of the simulations performed in 
this work. Section IV discusses the results obtained, ending with 
Section V, with a brief conclusion. 

II. MATCHED FILTER 
In radar detection, the higher signal-to-noise ratio (SNR), the 

greater target detection distance. Several factors influence the 
SNR, such as radar operating power, the gain of its antennas, 
target radar cross section (RCS), noise, and general losses [1]. 
However, even operating under better conditions of these 
parameters, some characteristics are beyond the radar operator's 
management, such as thermal noise. Always present in 
electronic systems, there must be a way to circumvent the 
negative influence of this factor. One way widely used is through 
the filters that maximize the SNR through pulse compression in 
time [1]. 

Considering the continuous-time analysis, the output signal 
of a matched filter at a time instant 𝑇! can be expressed as [2]:  
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where 𝑋(Ω) is the frequency spectrum of the transmitted radar 
signal waveform, and 𝐻(Ω) is the frequency response of the 
filter in question.  

On the other hand, the total white noise power at the filter 
output is given by [2]:  
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where 𝜎+"  is the spectral density of the white noise power at the 
output of the filtering process. Thus, the maximum signal-to-
noise ratio obtained at the time instant 𝑇! is given by: 
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Observing (3), one can infer that the SNR is directly related 
to the product of the filter frequency response and the radar 
signal spectrum. To better define it, a parallel is made with the 
Cauchy-Schwarz inequality, defined by [8]:  
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Substituting the inequality (4) in (3), thus: 
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The maximum signal-to-noise ratio occurs at an instant of 
time 𝑇!, where: 

𝐻(Ω) = 	𝑋∗(Ω)𝑒)%&'! , (6) 

which is the complex conjugate of the generated waveform. This 
is the transfer function of the ideal matched filter, which can be 
seen as a filter designed for a specific waveform that optimizes 
the SNR when the received signal is contaminated only by an 
additive white Gaussian noise.  

One particularity of a radar receiver that uses a matched filter 
is the output SNR of the signal. It depends only on the total 
energy of the received pulse, defined by its amplitude and 
duration, and on the pulse bandwidth, which defines the noise 
power. Then, the SNR can be re-written as [9]: 
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Applying Parseval's theorem to determine the energy of the 
pulse, we obtain: 
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Finally, the SNR can be expressed by 

SNR =	
𝐸𝑛𝑒𝑟𝑔𝑦
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It is possible to observe that the above analyses were 
performed in continuous time. However, they are still valid for 
discrete signal processing, as in the simulations presented in this 
paper [1]. 

III. SIMULATION METHODOLOGY AND MODELING 
The simulations performed in this paper were done using 

Matlab software and are based on the model proposed by Moura 
[10] whose simplified architecture can be seen in Fig. 1. In his 
work, a simulator of a surveillance radar was made with 
parameters similar to those used in real systems. We decided to 
use it as a base to have results close to those found in real-world 
scenarios and not only unattainable theoretical values. The 
values used in the simulator are shown in Table I.  

 
Fig. 1 – Simplified simulation architecture. 

Table I – Radar parameters 

Parameters Value 
Peak power 40 kW 
Pulsewidth 300	µs 
Bandwidth 600 kHz 
Carrier frequency 1237.5 MHz 
Noise figure 1.8 dB 
Maximum antenna gain 37 dB 
Transmission losses 1.5 dB 

 

The model in Fig. 1 starts with the generation of a LFM 
waveform and initial phase ∅- = 𝜋. Its complex representation 
in the discrete time domain is given by  

𝑥[𝑡] = 𝑟𝑒𝑐𝑡 C.)
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where 𝜏 is the pulsewidth and 𝐵+ the bandwidth. 

In the next steps, the signal 𝑥[𝑡] goes through a digital up 
converter (DUC). Then, it passes through a bandpass filter, an 
amplification process related to the transmit antenna gain, radar 
peak power, and system losses to be radiated. 

As the objective of this work is to analyze the effects of the 
number of bits and a sampling rate of a pulse in the matched 
filter to avoid any form of external interference in the results, the 
propagation of the pulse and its reflection on the target were 
disregarded. In this way, immediately after being transmitted, 
the pulse is already received, amplified, and mixed with white 
noise, obtaining the contaminated signal 𝑥′[𝑡]. The next steps of 
its passage through the pre-selector filters, analog-to-digital 
converter (ADC), digital down conversion (DDC), and the other 
steps of a radar receiver are well described in [10]. 

Specifically about the insertion of quantization noise into the 
signal 𝑥′[𝑡], we modeled a uniform midrise transfer function 
(TF) of an ADC as described in [11]. The 𝑇𝐹 can be represented 
with 25 elements differentiated from each other by one LSB 
(Least Significant Bit based on the ADC's full scale), where b is 
the number of bits tested. 

𝑇𝐹 =	 [(−𝐿𝑆𝐵)25)# 		…			(+𝐿𝑆𝐵)25)#]	. (11) 

Then, each 𝑥′[𝑡] sample passes through the linear 
quantization process,  generating the quantized signal 𝑥′6[𝑡]. As 
an example, the result for an 8-bit ADC is shown in Fig. 2. 

It should be noted that nonlinearity and offset errors in the 
ADC transfer function have been disregarded. Thus, the SNR 
due to the quantization process can be estimated by [12]: 

SNR(dB) = 6,025 + 1,76	. (12) 
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Therefore, the theoretical values for an ADC with 4 and 8 
bits are 25.84 dB and 49.92 dB. The values measured in this 
modeling for the same number of bits were 25.56 dB and 49.21 
dB, a fact that validates this transfer function. The small 
perceived difference is related to the choice of a scale 
background slightly larger than the peak of the signal 𝑥7[𝑡] to 
avoid possible clipping of the input signal. 

 
Fig. 2 – Inserting the quantization error in the signal 𝑥′[𝑡]. 

After passing through the ADC, the signal 𝑥′6[𝑡] arrives at 
the matched filter. The impulse response ℎ[𝑡] of the filter in 
question was designed according to the waveform 𝑥[𝑡], as 
defined in (6). It is emphasized that once the sampling rate of the 
signal is chosen, it is the same as ℎ[𝑡] and remains constant at 
all stages of the radar processing.  

Finally, based on (1), the convolution process is performed 
between the input signal and the impulse response ℎ[𝑡] of the 
matched filter. To reduce computational processing, this step 
was performed in the frequency domain by using the fast Fourier 
transform (FFT) and its inverse transform (IFFT), as described 
below: 

𝑦[𝑡] = 	𝐼𝐹𝐹𝑇 ]𝐹𝐹𝑇^𝑥′6[𝑡]_	𝐹𝐹𝑇{ℎ[𝑛]}b. (13) 

IV. RESULTS 
Simulations were run to analyze the effects of the ADC 

number of bits and the sampling rate in a signal after the 
matched filter. At the end of these simulations, the results 
obtained were stored and compared with each other in order to 
check their constancy and robustness. The difference found in 
the values of the results at each run occurred only at a 
centesimal level, caused by the behavior of the existing white 
noise. 

Initially, only the number of bits was varied, from 1 to 8, 
and all other characteristics were kept constant. Later, for a 
fixed number of bits, the sampling rate was modified between 
640 kHz, 6.7% higher than the minimum frequency stipulated 
by the Nyquist criterion, and up to 10 times this value. Finally, 
simulation rounds were performed in which both variables were 
changed together.  

 

 

A.   Quantization Effects 
In this simulation round, the sampling rate was fixed at 

640 kHz by varying only the number of bits. In Fig. 3, it is 
possible to see the signal in the time domain after the matched 
filter. It can be seen that the increase in the number of bits has a 
direct effect on the behavior of the sidelobes. This result agrees 
with the results obtained by [3], [4] e [6].  

Specifically in [3], the decrease in the number of bits 
generated a more prominent increase in the average power of the 
right side lobe of the signal, a fact not observed in the results of 
this work. The explanation for this difference is supported by the 
scenario simulated in that paper since it deals with the bit 
variation of a DRFM in a radar interference process. The 
tendency of the behavior of both sidelobes was the same, except 
for some details caused by the differentiation in the experiments. 

 
Fig. 3 – Matched filter output for different bit values.  

The signal compression gain and the average sidelobe power 
were measured for each scenario and are presented in Fig. 4. 

 
Fig. 4 – Analysis of compression gain (main lobe) and average side lobe 

power. 

When analyzing the effect of the increment in the number 
of bits on the compression gain, it can be seen that there is a 
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slight decrease in power up to 4 bits stabilizing after this value. 
This trend was also observed in [5]. Finally, the average power 
of the sidelobes also showed similar behavior of falling sharply 
up to 4 bits, as also evidenced by [3] and [4]. 

Such a tendency is justified in the quantization process. An 
analog signal passing through a 1-bit ADC has its samples 
rounded to LSB-based values. Sometimes these roundings are 
to absolute values larger than those observed in the analog 
signal (as shown in Fig. 5). With a larger number of bits, this 
effect is minimized to the point that it doesn't make a significant 
difference when the number of bits increases.  

 
Fig. 5 – Effect of the quantization error. Simulation with 1 bit. 

Another way to analyze this effect occurs in the frequency 
domain. Performing the Fourier Transform of the same signal 
mentioned above and of a signal with 8 bits, we obtain the 
power spectra of Fig. 6. It can be seen that, due to the 
explanation commented earlier, the power of the 1-bit quantized 
signal is higher than that of the 8-bit signal in almost every 
range of the analyzed spectrum. 

 
Fig. 6 – Comparison of power spectra after the matched filter. 

 
B.   Sampling Rate Effects 

In this round of experiments, the number of bits was fixed at 
8 and only the sampling rate of the signal was varied from one 
to four times the minimum frequency stipulated by the Nyquist 
criterion (640 kHz), as shown in Fig. 7. Even though 6.7% above 
the theoretical one for this complex signal, it was used due to the 
imperfections existing in real filters.  

It is possible to see the effect of the increased sampling rate 
on the behavior of the sidelobes. More influential at frequencies 
near the theoretical minimum threshold, the average power of 
the sidelobes tend to decrease with increasing sampling rates.  

 

 
Fig. 7 - Matched filter output for different sampling rates. 

In detail, this effect can be better analyzed in Fig. 8. It can 
be seen that the signal compression gain does not vary with 
increasing sample rate. This result was already expected based 
on (9) and the signal sampling theory. A signal discretized at 
rates above that stipulated by the Nyquist criterion has enough 
energy for its complete reconstruction, and its essential 
characteristics remain unchanged [13]. The same result was 
also acquired by [7] with the argument that the signal strength 
does not change with this sampling increment since the 
architecture of the filter spectrum is the same as the signal 
received by the filter. 

 
Fig. 8 - Analysis of compression gain (main lobe) and average side lobe 

power. 

However, for values located at the lower limit of the 
sampling rate, an increase in the average power of the sidelobes 
is noticeable. This effect shows the presence of initial distortions 
due to undersampling [13]. In a scenario of an eventual 
reduction of the sampling rate below the simulated ones, it is 
possible to see the formation of unwanted replicas on both sides 
of the original pulse with a decrease in its compression gain. 

 
C.   Cross Analysis 

A third round of simulations was performed, modifying 
both the number of bits and the signal sampling rate entering the 
matched filter to compare the effects of the two variables 
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analyzed in this paper. In this scenario, the number of bits 
varied from 1 to 8, and the sampling rate from 1 to 10 times the 
minimum frequency stipulated by Nyquist, as can be seen in 
Fig. 9.  

About the compression gain, there is a reduction of this 
value with an increase of the ADC resolution up to 4 bits, as 
previously justified. However, there is a greater decrease of this 
gain between the first and second bit when the sampling rate of 
the signal is the one stipulated by the Nyquist criterion. There 
is also a slight oscillation of the compression gain when varying 
the sample rate in a system with resolution of up to 4 bits. After 
that amount, such gain does not change with an increment of 
sampling, an effect supported by the signal sampling theory and 
by (9). 

 

 
Fig. 9 – Analysis of compression gain and average sidelobe power with 

varying sample rates and number of bits. 

Under the focus of the average sidelobe power, we notice a 
decrease in this value with an increase in the number of bits. 
This drop is more pronounced in the first 4 bits, regardless of 
the sampling rate. However, at rates close to Nyquist, this drop 
is greater. For a sampling rate at the Nyquist frequency, the 
average power of the sidelobes drops 9.55 dB in the first 4 bits, 
while for a rate ten times the Nyquist one, this reduction is 
7.38 dB. 

It is also possible to notice a decrease in the average 
sidelobe power with a sampling rate increase. However, this 
decrease occurs at different intensities for different bit values. 
For one bit, for example, such power is reduced by 9.71 dB with 
the variation of the sampling rate from one to ten times the 
Nyquist rate. But for the same range and an ADC with 8 bits, 
this reduction is only 5.28 dB. Therefore, depending on the 
processing costs in increasing the resolution or sampling, it may 
not be worthwhile using more complex systems since this 
results in minimal or no change in the sidelobe levels. 

The lower graph in Fig. 9 also allows observing that there 
are different possible combinations of a system that deliver the 
same average sidelobe power. For instance, a 6-bit ADC 
operating at the sampling rate defined by the Nyquist criteria 
produces equal average sidelobe power than systems with 
sampling rates up to 10 times higher and low-resolution ADC.  

V. CONCLUSION 
In this work, we performed an analysis of the effects of 

varying the number of bits and the sample rate of an LFM 
intrapulse modulated signal on a radar receiver matched filter. 
We concluded that the number of bits impacts the behavior of 
the sidelobes and, for up to 4 bits, also affects the compression 
gain of the matched filter. The sampling rate, in turn, does not 
produce significant changes in the gain if kept within the values 
stipulated in the Nyquist criterion and medium to high 
resolution. However, for the sidelobes, rates very close to the 
minimum frequency cause a slight increase in the average 
power of these lobes. Finally, when both variables are analyzed 
in combination, it can be seen that if the objective is to reduce 
sidelobes level, different parameter values deliver same results. 
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