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Abstract— Multi-access Edge Computing (MEC) extends cloud
computing to the network’s edge, placing MEC servers closer to
End Devices (EDs). This paradigm aims to respond locally to
computing tasks, reducing the routed data to the core network
and the communication latency. Nevertheless, offloaded task
requests may congest MEC servers and increase waiting times.
Therefore, this paper proposes the Dynamic and Intelligent
Network Operative (DINO) MEC server, an edge computing host
server that securely and efficiently handles task offloading. The
proposal spans the MEC server from the ED premises to the edge
network. DINO splits into Customer Premises Equipment (CPE)
and Virtualized Infrastructure (VI), and relies on a modular
architecture that allows the CPE to be placed anywhere between
the ED’s premises and the VI running in the edge network. We
assess DINO’s performance by varying the number of EDs to
verify how the modular architecture affects the network overhead
and delay. Results show a minimal increase in the experimented
delay due to the proposed MEC server, which is outgrown by the
delay due to the medium access control protocol. The network
overhead is negligible, allowing EDs accessing an edge service to
achieve the same data rate as the EDs accessing a cloud service.
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I. INTRODUCTION

Previous generations of data-enabled mobile networks rely
on the core network to route data traffic from a data center to
a base station close to the mobile End Device (ED) [1]. How-
ever, it potentially increases communication latency, mainly
due to the propagation delay between the ED and the data
center. High-latency communication does not meet the next-
generation mobile networks’ requirements. Thus, the European
Telecommunications Standardization Institute (ETSI) proposes
the framework and the reference architecture for Multi-access
Edge Computing (MEC) to provide a network solution to
deliver services and computing functions to the edge nodes
with reliable and ultimate service experience. The MEC
architecture allows resources, applications, and services to
span the communication path from the ED to the cloud [2].
MEC architecture also supports high-bandwidth and low-
latency applications and services bridging cloud computing
and end-users [2]. To this end, MEC takes advantage of
the existing Network Function Virtualization Infrastructure
(NFVI) and NFV Management and Orchestration (MANO).
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MEC enhances NFVI and MANO with new computing and
storage resources and creates a virtualized environment for
a wide range of applications running at the mobile network
edge [3]. Software-Defined Networking (SDN) and Service
Function Chaining (SFC) are two other major building blocks
to deploy MEC. SDN separates the control and user planes
and logically centralizes the control plane. SFC consistently
interconnects multiple virtualized network functions, applying
functions in a specific order suitable to the MEC environment.
SDN and SFC/NFV allow the implementation of network
slicing to achieve performance requirements for each MEC
application by dynamically setting up logical networks.

Several challenges exist when deploying a MEC environ-
ment. For instance, the high number of EDs’ network flows
may overload the SDN controller and degrade the network
performance and Quality of Service (QoS) guarantees. Hence,
placement of the MEC components throughout the network
environment is a complex task and essential to ensure that
the control and data planes at the edge network meet the
requirements of the constantly oscillating network flows of
EDs. In this context, there is a need for solutions that support
efficient tasking offloading schemes in MEC-enabled envi-
ronments. This paper proposes the Dynamic and Intelligent
Network Operative (DINO) MEC Server, an edge computing
host server that spans from the ED premises to the edge
network. To deploy DINO MECS, we propose a network
architecture that relies on traditional TCP/IP protocols. We
split the server into Customer Premises Equipment (CPE) and
a Virtualized Infrastructure (VI), connected through a secure
virtual communication link. We aim to reduce the overall
latency to access MEC applications. We assess the perfor-
mance of the DINO MECS’ proposed network architecture in
different scenarios, varying the number of connected clients
and the traffic load. The results show that the delay due to
the medium access control protocol outshines the delay due
to the proposed network architecture. Hence, the added delay
is minimal. Moreover, our architecture does not influence
network fairness, and the network overhead is negligible.

The remainder of this paper is organized as follows. Sec-
tion II briefly discusses related work. Section III reviews
the Multi-access Edge Computing system according to ETSI.
Section IV presents the DINO MECS model and the proposed
underlying network architecture, discussing the implemen-
tation. Section V presents the results. Finally, Section VI
concludes this paper and provides future work directions.
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II. RELATED WORK

Mattos et al. propose a distributed SDN controller archi-
tecture, not fastened to any specific network environment,
aiming to maintain a global view of the network by estab-
lishing independent areas [4]. Li et al. [5] investigate the
SDN controller placement problem modeled into a multi-
objective optimization problem, considering an SDN-based
Internet of Vehicles (IoV) environment using Deep Reinforce-
ment Learning (DRL). The authors propose novel models
for jointly achieving optimal latency, load balance, and high
reliability in a dynamic network environment based on an edge
controller, a domain controller, and a root controller in a three-
layer architecture. Similarly, security remains a significant
challenge, as MEC joins various building blocks to enable the
technologies and techniques for computation offloading [2].
As a result, MEC introduces risks related to all its building
blocks. Moreover, the MEC Servers (MECSs) have limited
computing and storage capacity, posing a challenge to serving
many users, as resources can be depleted quickly. Congestion
on the MECS due to frequent task offloading from EDs ceases
the advantages of deploying a MECS, as more prolonged
waiting times override the provided ultra-low latency.

Bolettieri et al. [6] focus on network slicing, designing a
multi-tenant MEC architecture for application and network
slicing, considering different operational and business roles.
The authors neglect security issues related to communication
within the proposed architecture. Lee et al. [7] propose a mo-
bile personal MEC architecture using the user’s mobile device
as MECS. The goal is to provide faster responses and deliver
services continuously to the end user. The proposed scheme
reduces the average service delay and provides efficient task
offloading compared to the existing MEC scheme due to
using mobile user devices as MECS. The approach, however,
increases the consumption of users’ device computational
power, which may lead to quicker battery depletion due to
increased energy consumption. These works do not focus on
secure communication with the MECS nor the deployment
of MECS on the ED premises without affecting the ED
performance. Most works related to MEC architectures do
not address fundamental technical issues in the architecture
design, such as partitioning the functions between the network
and application layers. Furthermore, a MEC architecture must
consider computing and communication models that do not
modify the traditional TCP/IP protocol stack [8].

Differently, we aim to support efficient task offloading by
deploying a MECS as an edge computing host server in
the MEC environment without affecting user devices’ energy
consumption while focusing on the easy deployment of such
servers. Our solution is compatible with the traditional TCP/IP
protocol stack to facilitate integration with the current network
and to be agnostic to the network environment.

III. MULTI-ACCESS EDGE COMPUTING (MEC)

The ETSI GS MEC 003 V3.1.1. (2022-03) describes the
MEC system that enables MEC applications to run effi-
ciently and seamlessly in a multi-access network [9]. The
MEC generic reference architecture defines a MEC host level

and a MEC system level [2], [9], [10]. At the host level,
MEC architecture contains the MEC host, the MEC plat-
form manager, and the Virtualization Infrastructure Manager
(VIM). The MEC host comprises the MEC platform, MEC
applications, and Virtualization Infrastructure (VI). The VI
provides computing, storage, and network resources for MEC
application instantiation. The VI’s data plane executes traffic
rules received by the MEC platform and routes traffic among
applications, services, DNS server/proxy, access networks,
local networks, and external networks. The MEC platform
is a set of paramount functionality required to run the MEC
applications on the VI, enabling them to provide and consume
MEC services. The MEC platform receives traffic rules from
the MEC platform manager, applications, or services and
instructs the data plane accordingly. The MEC applications
are instantiated on the VI and can interact with the MEC
platform to consume and provide MEC services. The MEC
platform manager is responsible for keeping the applications’
lifecycle, providing element management functions to the
MEC platform, and supervising the application rules and
requirements. The VIM has several responsibilities, such as
managing the VI’s computing, storage, and networking re-
sources and preparing the VI to run a software image. The
VIM also reallocates applications from and to external cloud
environments according to the applications requirements [9].

The MEC system level contains the MEC Orchestrator
(MEO), the Operations Support System (OSS), the device
application, and the Customer Facing Service (CFS) portal.
The MEO is the core functionality in the MEC system-
level management. It maintains a global view of the MEC
system based on deployed MEC hosts, available resources,
MEC services, and topology. The MEO selects appropriate
MEC hosts for instantiating and relocating applications and
terminates applications. The OSS receives requests via the
CFS portal and from device applications for instantiation or
termination. The interactions happen via a user-application
lifecycle-management proxy, and the granted requests are
forwarded from the OSS to the MEO for further processing.
The CFS portal allows third-party customers to select and
order a set of MEC applications and to receive back service
level information from the provisioned applications.

The MEC architecture also structs as layers according
to functional elements. The structure comprises EDs at the
bottom layer, followed by the access network, the edge net-
work, and the core network layers. The end devices layer
includes all EDs connected to the access network, such as
User Equipment (UEs) and Internet of Things (IoT) devices.
The access network layer comprises the networks connecting
EDs to the edge or core networks. The edge network layer
contains the edge network infrastructure owned by an infras-
tructure provider owns it. The MEC deployment may occur
through multiple edge networks that continuously cooperate
and remain connected to the traditional cloud [11]. The core
infrastructure resides in the core network layer, where the cen-
tralized MEC control and management functions for the EDs
are deployed [2]. Communication between EDs and services
can happen directly with cloud servers on the Internet through
the core network layer or with MEC Servers (MECS) through
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the edge network layer. MECS are edge servers that exist along
with the VI [2] in the edge network layer. The MECSs are
small-scale data centers that accommodate the MEC host and
provide the computing, storage, and network capabilities that
cloud data centers once provided centralized. The provided
capabilities are shared by multiple virtual machines running
on top of these servers [3]. MECSs are managed and owned
by the infrastructure provider and can be deployed anywhere
between the Radio Access Network (RAN) and the edge of
the core network [11]. Hence, offloading tasks to the MECS
reduces the latency compared to offloading to a cloud server.

IV. THE DINO MEC SERVER MODEL

We propose DINO MECS, an operative that supports secure
connections from different applications and enables computing
and storing capabilities at the edge network, reducing task load
on EDs and providing low latency. DINO MECS supports
efficient handling of task offloading in a MEC environment
by combining hardware resources and a virtual layer managed
by the DINO module. We deploy a MEC-based architecture
that allows EDs to connect to DINO MECS. We assume that
part of the MECS hardware is a piece of Customer Premises
Equipment (CPE) co-located with the Access Point (AP) at
the ED premises. The other part of the MECS hardware
resides in a Virtualized Infrastructure (VI). The separation is
advantageous, as the VI forms an edge cloud that may be
placed anywhere within the edge network. The CPE provides
EDs with automatic and secure access to the VI. Hence, DINO
MECS seamlessly spans from the ED premises to the edge
network, agnostic to the underlying access network.

The DINO MECS follows a modular architecture, shown in
Figure 1, that allows the simple and practical deployment of
new functionalities. The main module is the DINO module,
divided into a client- and a server-side component. The module
manages communication between the ED premises’ CPE and
the edge network VI. The CPE provides access to EDs, cre-
ating managed Wireless Local Area Networks (WLANs). The
software suite embedded into the CPE divides into (i) DINO
Client (DINO-C), (ii) Remote Connection Client (RCC), and
(iii) Network Virtualization (NV) modules. The (i) DINO-
C module manages the network connection with the VI and
enforces actions received from the DINO Server (DINO-S).
The (ii) RCC creates two virtual private connections, one
for control and the other for data. The control connection
reaches a virtualized firewall in the VI provided by a Network
Security module (NS), while the data connection reaches a
target Virtual Machine (VM) behind the firewall. The VM
runs, e.g., MEC applications that provide services to EDs.
A Virtual Private Network (VPN) software establishes both
connections. We also deploy a Generic Routing Encapsulation
(GRE) tunnel in the data VPN to allow any traffic to be
transmitted as a MAC-based link-layer network. As such, the
underlying network infrastructure becomes transparent. We use
OpenVPN1 to establish the VPNs. The (iii) NV module allows
the creation of virtualized network interfaces over the CPE’s
physical network interface. To this end, we use Open vSwitch

1Available at https://openvpn.net/.

(OVS)2, a multilayer software switch that provides a switching
stack for hardware virtualization and allows the creation of
OpenFlow-enabled virtual switches. Hence, the CPE generates
managed WLANs and correctly forwards the traffic to the edge
network or the Internet. If the user accesses a MEC service,
traffic flows to the VI. Otherwise, the traffic routes to the
Internet via the carrier’s core network.

Figure 2 shows the network communication scheme to
enlighten how the CPE correctly forwards the traffic. The
DINO-C generates an “Edge WLAN” and a “Cloud WLAN”
using two bridges, wlan edge and wlan cloud. The NV
module creates two virtual network interfaces connecting to
a virtual switch provided by Open vSwtich (OVS). OVS
connects to the CPE’s physical Ethernet interface (eth0).
The DINO-C attaches a GRE tunnel to the OVS for carrying
traffic from the Edge WLAN, aiming to reach applications and
services behind the virtualized firewall at the IV. The Cloud
WLAN is logically attached to a local interface, allowing
traffic to flow directly to the Internet. Therefore, EDs in the
Edge WLAN connect to the edge network, whereas EDs in
the Cloud WLAN connect to the Internet. The data VPN
encapsulates the GRE tunnel and is established with the MEC
tenant VM. The control VPN is established with the DINO
Server (DINO-S) module to manage communication and uses
TCP as the transport protocol. DINO-S also uses a virtual
router to forward traffic for tenants in the VI correctly [12].

The VI software suite divides into (i) DINO Server (DINO-
S), (ii) Network Security (NS), (iii) Network Controller (NC),
(iv) Remote Connection Server (RCS), (v) Identity and Access
Manager (IAM) and (vi) Virtualization Infrastructure Manager
(VIM) modules. The (i) DINO-S module manages the network
connection with the CPE, serving as an interface between
the CPE and the NS, NC, RCS, and IAM modules. The
DINO-S module also provides an interface with any new
service or application running on the VI. The (ii) NS module
inspects packets and enforces the security policy rules to block
unapproved communication with the VI. We deploy Pfsense3

as the NS, acting as a virtual router and enabling features such
as firewall, intrusion detection, and malware detection [13].
The (iii) NC is responsible for managing the network flow.
We use Open Network Operating System (ONOS)4 as NC. The
(iv) RCS receives the remote connections from the RCC, es-
tablishing a secure channel for control and data traffic. The (v)
IAM provides authentication, authorization, and accountabil-
ity, allowing identity and policy management. We deploy as
IAM the Free Identity, Policy and Audit (FreeIPA)5 software,
which is Free and Open Source (FOSS) software. Finally,
the (vi) VIM module is primarily responsible for managing
application and service provisioning using the resources at the
edge network’s VI and maintaining information about these
resources, such as topology, available resources, and services.
We deploy as VIM the Openstack6 platform, which is open
source and provides cloud infrastructure for VM, bare metal,

2Available at https://www.openvswitch.org/.
3Available at https://www.pfsense.org/.
4Available at https://opennetworking.org/onos/.
5Available at https://www.freeipa.org/.
6Available https://www.openstack.org/
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Fig. 1. DINO MECS spans from the UE premises to the edge network, and it is composed of a software suite divided into CPE and VI. The DINO module
manages the communication between the CPE and VI through a secure connection.

Fig. 2. DINO MECS is a piece of CPE that connects to the Edge
Network through a couple of VPNs and a GRE tunnel. The VI deployment is
over OpenStack platform. The centralized DINO-S deploys an ONOS SDN
controller to control the operation of DINO MECS instances. As a result,
each tenant experiences an isolated edge network environment.

and containers. Hence, Openstack controls the computing,
storage, and networking resources pool.

The MEC environment joins cloud computing and network
virtualization, inheriting threats from both domains. MEC-
based solutions must tackle entity authentication, identity ver-
ification, network security with traffic separation, application
integrity assurance, malware detection within the MEC layer,
data encryption, and temper-proof MEC equipment [2]. Our
proposal addresses these requirements, excepting application
integrity assurance and temper-proof MEC equipment, which
are not in the scope of this work. The IAM and RCC/RCS
modules address entity authentication and identity verification,
while the NV and NC modules tackle network security with
traffic separation, aided by the RCC/RCS modules. The NS
module addresses malware detection within the MEC layer,
and the RCC/RCS modules address data encryption.

V. RESULTS AND DISCUSSION

We assess the performance of the proposed DINO MECS
network architecture in different scenarios, varying the number
of connected clients and the traffic load. The main goal is
verifying the added overhead’s impact on communication. To
this end, we deploy a testbed composed of four clients, one
DINO CPE at the local premises and the DINO VI at the edge
network. The clients play the role of edge devices. Clients and
the DINO CPE are Raspberry PI 4 Model B boards with 2GB
RAM, running Ubuntu 20.04. Clients run iperf to generate
a Constant Bit Rate (CBR) traffic within the Nominal Data
Rate (NDR) set {0.5, 1, 10, 20, 30, 40, 50} Mb/s. The traffic
directly targets DINO VI (Edge Setup) or DINO CPE (Local
Setup). We evaluate the local network in the Local Setup, and
our architecture has no influence. In turn, the Edge Setup
assesses the overhead of remote connections and the GRE

(a) Local Setup. (b) Edge Setup.

Fig. 3. Delay experienced by clients when the NDR and the number of
clients increase. The experimented delay is mainly due to the medium access
control protocol in the WLAN.

(a) Local Setup. (b) Edge Setup.

Fig. 4. Real data rate clients achieve when the NDR and the number of
clients increase. Our architecture does not influence network fairness, as the
connected clients receive equal fractions of the network bandwidth in both
the Edge and Local Setups.

tunnel by sending data to an application VM in the DINO VI.
The testbed’s edge network is a private cloud deployment at
Universidade Federal Fluminense (UFF) in Niterói/RJ, Brazil.

In the first scenario, we evaluate the delay clients experience
in each setup. We run ten ping tests varying the number
of connected clients for each data rate. Figure 3 shows the
results with a confidence interval of 95%. The delay varies
more when the number of clients or traffic increases in all
setups. Figure 3(a) shows that the delay in the Local Setup
increases with the growth of the sent traffic, and, within the
same data rate, the delay increases with the number of clients.
It is an expected result due to the contending over access
to the transmission medium. Hence, as clients are subject
to the CSMA/CA protocol, they experiment with increasing
and varying delays due to risen time to access the medium.
When traffic targets the application VM and, thus, flows
through the GRE tunnel and the data and control VPNs, the
delay behavior is similar to the Local Setup, as shown in
Figure 3(b). However, due to the high variation of the delay in
both setups for higher data transmission rates and the number
of clients, it is not directly correlated whether the proposed
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(a) Real data rate. (b) Aggregated data rate.

Fig. 5. Real data rate achieved by clients connected on the Edge and Cloud
WLANs when the NDR and the number of connected clients increase. One
client connects to the Edge WLAN, while up to three clients connect to the
Cloud WLAN. Increasing the number of clients in the Cloud WLAN does
not affect the client connected to the Edge WLAN.

modular architecture significantly influences the delay. Nev-
ertheless, considering one client and any NDR, the influence
of CSMA/CA over the experimented delay is negligible, and
we observe that the delay is statistically the same for both
setups. Therefore, we infer that the experimented delay due to
the proposed modular architecture is minimal.

In the second scenario, we capture the traffic generated by
iperf to evaluate the real data rate clients achieve when
the NDR and the number of clients increase. Figure 4 shows
the results for each setup. The aggregated data rate represents
the sum of all clients’ real data rates. Figures 4(a) and 4(b)
show that the real data rates for the Local and Edge Setups
have similar behavior. The connected clients receive equal
fractions of the network bandwidth if the aggregated data rate
is lower than 54 Mb/s, which is the upper-bound data rate due
to limitations on the wireless network interfaces. Hence, the
proposed MEC architecture does not hamper network fairness.

In the last scenario, we evaluate whether increasing the
data traffic and the number of clients connected to the Cloud
WLAN influence the real data rate achieved by the client
connected to the Edge WLAN. In this scenario, DINO CPE de-
ploys an additional wireless network card, a Realtek 8821CU
Wireless LAN 802.11ac USB. The additional network card
deploys a 2.4 GHz wireless network for the Cloud WLAN. We
capture the CBR traffic generated by iperf on both wireless
networks (Cloud and Edge WLANs). Figure 5 shows the
results considering one client connected to the Edge WLAN,
namely edge client, and up to 3 clients connected to the
Cloud WLAN, namely cloud clients. The edge client achieves
a real data rate equal, or statistically close, to the nominal
data rate, independently of the sent data rate and the number
of cloud clients, as shown in Figure 5(a). The cloud clients
also achieve the NDR. Figure 5(b) shows that the aggregated
data rate for the edge client is equal to the NDR, as it is
the only client in the Edge WLAN. Focusing on the Cloud
WLAN, the aggregated data rate increases when the NDR and
the number of cloud clients increase, as expected. Hence, the
traffic load on the Cloud WLAN does not affect the actual
data rate achieved by the edge client.

VI. CONCLUSION

Edge computing is present in everyday life through end
devices, such as smartphones or Internet of Things devices

in local networks. However, accessing the edge network is
still a challenge. Thus, this paper proposed the Dynamic
and Intelligent Network Operative (DINO) for Multi-access
Edge Computing. DINO’s goal is to securely extend the Edge
Network to the local access network in a transparent, practical,
and cost-effective manner. The paper evaluated the proposed
implementation. The results show that the proposal introduces
a negligible delay in communication between end devices and
the edge network, maintains fairness in sharing networking
resources, and allows end devices to access the total capacity
of the wireless access link. Moreover, we also show that
the local wireless network and the edge network accesses
are isolated from the performance standpoint. We envision
removing in future work the need for two separate WLANs
by developing an automatic mechanism to split the traffic
correctly to the cloud and to the edge.
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