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Abstract— In this work, we study the inter- and intra-slice
scheduling of the Industry 4.0 scenario considering three
services available: enhanced Mobile Broadband (eMBB),
Ultra-Reliable Low-Latency Communication (URLLC), and
Massive Machine Type Communication (mMTC). In this con-
text, we proposed inter-slice scheduling with Ultra-Reliable
Low-Latency Communication (URLLC) service protection
using the reinforcement learning agent. In our results, to
get clos er to a practical Industry 4.0 scenario, we utilized
channel measurements of an actual factory hall in Nurem-
berg, Germany. The superiority of the proposed framework is
demonstrated through numerical simulations compared with
reference solutions.

Keywords— Resource Scheduling, Industry 4.0, Slices, Re-
inforcement Learning, Service Protection.

I. Introduction

The 5th Generation (5G) of mobile networks has played
a significant role in developing cellular systems, causing
them to become increasingly widespread in industrial
and agricultural automation. Thanks to them, it is now
possible to interconnect many intelligent devices such as
sensors, drones, planes, and vehicles [1]. However, several
heterogeneous use cases also surfaced related to different
application areas. As an example, use cases supported by
5G related to Industry 4.0 have been defined by the 5G
Alliance for Connected Industries and Automation (5G-
ACIA), and 3rd Generation Partnership Project (3GPP)
have different communication requirements [2]. Various
levels of Quality of Service (QoS) in data rates, delay,
reliability, and availability have been established.

Therefore, it is interesting to make future generations of
cellular networks flexible and adaptable to different appli-
cations and user requirements. For example, 5G networks
have already introduced significant innovations to support
the digitization of verticals, such as a New Radio (NR)
interface with different numerology for the flexible use of
radio resources. Already network slicing is a promising
paradigm that exploits virtualization and networking soft-
ware to create different instances of independent logical
networks on a common physical network infrastructure in
both the Radio Access Networks (RANs) and the network
core. Each instance is tailored for specific QoS profiles,
so network slicing can simultaneously support multiple
mobile services. Basically, a slice is a tailored isolated
End-to-End (E2E) that contains resources from various
network domains and can accommodate a specific service.
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However, a vital issue in RAN slicing is Radio Resource
Scheduling (RRS), which is responsible for adequately
allocating the limited number of Resource Blocks (RBs)
(radio resources) to different individual users with different
QoS according to traffic variations and the dynamic state
of the channel. Unfortunately, RAN resource scheduling is
challenging due to radio channel variations, performance
isolation, diversified service requirements, and user mo-
bility [3].

In traditional systems, resource scheduling allows a
rigid way of exploiting resources among users to achieve
high-gain multiplexing with spectrum sharing [4]. Cur-
rently, the main goal of resource scheduling is to flexibly
and adaptively share resources among slice owners so that
the infrastructure can be utilized efficiently. During this
process, it is necessary to maintain a certain degree of
slice independence (performance and functional isolations)
so that the tenants can maintain complete control of their
custom slices to meet your service needs. When focus-
ing on Industry 4.0 scenarios, the protection of critical
applications (usually associated with URLLC slices) is an
essential demand for RRS due to the network and device’s
channel variations that could cause instability. It requires
constant adaptations from the RRS to still fulfill the critical
application requirements.

Following this reasoning, our contributions are: (i) the
development of a dataset and a simulator1 for Industry 4.0
scenario in Python; (ii) a study of URLLC service protec-
tion using the reinforcement learning agent as resource
scheduling. To emulate a more realistic Industry 4.0 envi-
ronment, we have integrated a traffic and channel simulator
developed in Python programming language and Quasi
Deterministic Radio Channel Generator (QuaDRiGa), con-
sidering eMBB, mMTC, and URLLC. As the results of
[5] suggest, the use of the 3GPP and QuaDRiGa channel
models for industrial systems in a frequency range from
2 GHz to 6 GHz enable more accurate simulation studies
for 5G and beyond-5G wireless communication system.
It is worth noting that the indoor factory has many metal
machine tools, making its radio propagation characteristics
and corresponding channel models significantly different
from those of the indoor office and indoor hotspot [6].
Then, using conventional optimization techniques to solve
the prediction and online resource scheduling problems
would be unfeasible.

II. System model

This section describes the scenario of this work, with
channel parameters, RAN slicing scheme, and traffic

1https://github.com/lasseufpa/rrs_industrial_scenario
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model.

A. Channel

We consider the downlink of an Frequency Division
Duplex (FDD) Orthogonal Frequency Division Multiple
Access (OFDMA) industrial indoor system, such as a fac-
tory hall, composed of a single antenna Base Station (BS).
The system has U User Equipments (UEs) equipped with
omnidirectional single-antennas. We consider that there
are three slice types with specific use cases, required delay,
and achievable data rate. For simpĺicity, we assume that
each UE belongs to only one slice type. We adopt that each
Transmission Time Interval (TTI) has R RBs, in which the
RB is the smallest resource unit that can be allocated to a
UE. Furthermore each RB is composed of Nsc adjacent
OFDMA subcarriers and Nsymb consecutive Orthogonal
Frequency Division Multiplexing (OFDM) symbols.

Considering that the BS allocates the r-th RB to u-th
UE, the perceived Signal to Noise Ratio (SNR) by the UE
is given by

γu,r =
α j pr |hu,r |

2

σ2
u

, (1)

where hu,r is the downlink channel of u-th UE with
allocated r RB, pr is the allocated transmit power to the
r-th RB, αu is the effect of path gain and shadowing
experienced by the u-th UE and σu is the noise power
experienced by the u-th UE. Therefore, we define the
spectral efficiency Su,n(n) to RB r and UE u as

Su,r(n) = log2(1 + γu,r). (2)

In this paper, we used the QuaDRiGa Industrial Indoor
Scenario with Line Of Sight (LOS) [7]. This scenario
was prepared for industrial-indoor deployments, such as
factory halls, in Industry 4.0 environments. Also, it covers
carrier frequencies from 2 GHz to 6 GHz. The detailed
description of the channel parameters used to generate
the scenario, such as shadow fading, small fading, angular
spread, and the number of clusters, are found in [5], [7].

B. RB allocation and RAN slicing

When considering the RRS in a scenario with RAN slic-
ing, the scheduling process is usually divided between two
different schedulers called inter- and intra-slice scheduling.
The former distributes the BS’s RBs available among the
slices, while the latter distributes the RBs received from
the inter-slice scheduling among the UEs associated with
the slice [8]. The main difference compared to the scenario
without slices is the focus on meeting the needs of a
group of UE instead of meeting the needs of each UE
individually [9]. Therefore, the purpose of the scheduler in
this scenario is to meet the requirements of each network
slice.

Each slice s contains a set of Us UEs with similar traffic
behavior and the same QoS requirements. A vector

Rn = [R1(n),R2(n), . . . ,RS (n)], (3)

defines the number of Resource Block Groups (RBGs)
allocated for each slice by the inter-slice scheduling in
the simulation step n, where Rs(n) represents the number

of RBGs allocated to slice s at step n. The RRS process
obeys to

S∑
s=1

Rs(n) = R, (4)

where the sum of all RBGs distributed along with the
slices is always equal to the total amount of RBGs
available R. Therefore, the main function of the RRS in a
scenario with RAN slicing is to define Rs(n) for each slice
s in a step n in accordance with the network conditions to
satisfy the slice requirements. Once the RBs are distributed
among the slices, the intra-slice scheduling is responsible
for distributing each among the slice’s UEs.

The slice requirements define the target values for each
monitored network metric. We define the slice require-
ments considering three main metrics: served throughput,
buffer occupancy, and buffer delay. The served throughput
for each UE is the maximum rate in bits per step that an
UE can obtain, considering the number of RBG allocated
to it and its spectral efficiency. In other words,

ru(n) =

 (Ru
s(n)/R)BSu(n)

P

P, (5)

where Ru
s(n) represents the number of RBG allocated to

u-th UE by intra-slice scheduling, B is the total bandwidth
available in the BS, S u(n) is the spectral efficiency for u-th
UE at step n, and P is the packet size.

The buffer occupancy rate is defined as

bocc
u (n) =

bu(n)
bmax

, (6)

where bu(n) represents the amount of data available in the
buffer of u-th UE in the simulation step n and bmax is
the maximum buffer capacity of UE. Packets are dropped
every time the buffer is full or the delay of a packet
exceeds the maximum delay dmax allowed by the buffer.

The buffer delay represents the average time each packet
waited before being sent or lost and is defined as

du(n) =
∑dmax

i=0 idu
n(i)∑dmax

i=0 du
n(i)
, (7)

where du(n) is a vector of dimension dmax+1 representing
the delay of packets in the buffer of u-th UE at step n.

C. Slice Types and Requirements

We define network slice metrics as an average of the
UEs metrics associated with a specific slice s. So, a
specific metric SMs for slice s is

SMs =

∑Us
u=1 SMu

Us
, (8)

where SMu can represent the served throughput, buffer
occupancy, and buffer delay of a specific UE u. Us
represents the total number of UEs associated with slice
s. Each slice type has different requirements. This work
assumes three different slice types: eMBB, URLLC, and
mMTC.
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1) eMBB slice: The UEs assigned to the eMBB slice
require high throughput, regardless of the channel con-
ditions, and they do not have stringent delay and packet
loss requirements. Augmented reality applications to assist
industry analysis is an example of an eMBB application.
We defined two main requirements for the eMBB slice:
the served throughput rembb(n) should be equal to or above
a specified minimum served throughput rreq

embb. The buffer
delay dembb(n) should be kept below a required buffer delay
dreq

embb. The requested throughput from UEs u associated
with eMBB slice rrqt

u (n) is a Poisson distribution with mean
µembb [10].

2) URLLC slice: The UEs assigned to a URLLC slice
requires low latency and ultra-reliable communication,
usually characterized by a low packet loss rate. Some
examples of URLLC applications are monitoring an au-
tomation process and its remote control, which does not
require a great throughput but requires high communica-
tion reliability and low latency to work well. URLLC slice
usually serves critical applications. Therefore, the network
must prioritize the URLLC slice and avoid violating its
slice requirements. The URLLC evaluated metrics are the
same from eMBB slice URLLC, with rurllc(n) and durllc(n)
representing the URLLC served throughput and buffer
delay. With rreq

urllc, and dreq
urllc representing the URLLC intents

for served throughput and buffer delay, respectevely. The
requested throughput rrqt

u (n) from URLLC UEs u is defined
as a Poisson distribution with mean µurllc.

3) mMTC slice: The mMTC slice is used to connect
many devices. Internet of Things (IoT) devices, such as
sensors with intermittent traffic, are essential examples of
mMTC applications in industrial scenarios. We assume
that the mMTC considers that the buffer delay durllc(n)
should be equal to or below a required buffer delay dreq

mmtc.
The mMTC UEs are activated or deactivated in each step
with a 50% probability. The requested throughput for
UE u from mMTC slice rrqt

u (n) is defined as a Poisson
distribution with mean µmmtc if the UE is activated or zero
otherwise.

Due to UEs channel variations, the network radio
resources may not be sufficient to satisfy all the slice
requirements during the entire simulation. Therefore, it is
essential to ensure that the URLLC applications have their
requirements prioritized in relation to the other slices due
to their critical applications.

III. Proposed RRS agent
This work proposes an Reinforcement Learning (RL)

agent to perform inter-slice RRS operations jointly with a
round-robin scheduler performing intra-slice RRS opera-
tions. We adopt the Soft Actor-Critic (SAC) RL method
defined in [11], which optimizes a stochastic policy us-
ing an off-policy technique, forming a bridge between
stochastic policy optimization and Deep Deterministic Pol-
icy Gradient (DDPG) approaches [12]. The SAC method
improves the exploration and solves the stability issues
presented by off-policy methods. Standard RL methods
maximize the expected sum of rewards. However, the tech-
nique SAC considers a more general maximum entropy
objective which favors stochastic policies by augmenting
the objective with the expected entropy.

A. Observation Space

We define the observation space On in a given step n as
a representation of the state st containing knowledgeable
information. The observation space is defined as

On = [sembb, surllc, smmtc], (9)

where slice metric vectors ss = [rs(n), bocc
u (n), ds(n)], being

composed by the three slice metrics: served throughput,
buffer occupancy, and buffer delay, respectively. These
slice metrics are the average values obtained from the UEs
connected to the analyzed slice.

B. Action Space

We define an action as a vector An in a given step
n, that is defined as An = [aembb, aurllc, ammtc], where
as represents an action factor for slice s with value in
a range [−1, 1] to match the output of the Gaussian
distribution for continuous actions used, improving the
learning process [11]. After that, the agent’s chosen action
An is converted to the number of RBGs for each slice

ARB
n =

⌊ R(An + 1)∑
i∈S (ai + 1)

⌉
. (10)

Finally, the inter-slice scheduling decision is applied in the
intra-slice scheduling using round-robin to distribute the
RBs among the UEs.

C. Reward Calculation

The reward function W(n) considers the slice require-
ments as a basis to define how close the slice metrics are
to fulfill their intents. So, the reward has one component
for each slice type as defined in

W(n) =

Wembb(n) +Wmmtc(n), if Wurllc(n) < 0
−(3 − 10Wurllc(n)), Otherwise

, (11)

where the Wembb(n), Wurllc(n) and Wmmtc(n) represent the
reward for eMBB, URLLC, and mMTC slices, respec-
tively, at step n.

The slice reward calculations for eMBB, URLLC, and
mMTC are based on served throughput rate and delay
requirements as defined in

Wembb(n) = −(Wr
embb(n) +Wd

embb(n)), (12)

Wurllc(n) = −(Wr
urllc(n) +Wd

urllc(n)), (13)

Wmmtc(n) = −Wd
mmtc(n), (14)

where Wr
s∈S (n) and Wd

s∈S (n)) represent the served through-
put and delay contributions to the rewards. The served
throughput contribution is defined as:

Wr
s(n) =


rreq

s −rs(n)
rreq

s
, if rs(n) < rreq

s

0, if rs(n) ≥ rreq
s
, (15)

and the buffer delay contributions is

Wd
s (n) =


ds(n)−dreq

s

dmax−dreq
s
, if ds(n) > dreq

s

0, if ds(n) ≤ dreq
s
. (16)

The objective of the proposed agent is to maximize
the reward function values, maximizing the fulfillment
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of the defined requirements. Moreover, it also provides
a prioritization of the URLLC slice in the Equation 11
where in case the URLLC slice requirements are not
satisfied, it receives a negative reward equivalent to the
unfulfillment of eMBB and mMTC slices plus the distance
to fulfill the URLLC slice multiplied by ten. Therefore,
the proposed agent is always incentivized to satisfy the
URLLC requirements first.

D. Baseline Agent

We utilize a baseline for comparison with our proposed
method, where the baseline uses the same observation
and action space from our proposed method. It utilizes a
reward calculation based on a modified SLA Satisfaction
Rate (SSR) method [13]. The reward function is defined
as

W(n) = Wembb(n) +Wmmtc(n) +Wurllc(n). (17)

IV. Numerical Results

Table I presents the communication network parameters
used in the channel simulation. We utilize an RL agent
to implement the inter-slice scheduling and a round-robin
method to perform the intra-slice scheduling.

TABLE I: Simulation Parameters.

Parameter Value

Bandwidth 100 MHz
Carrier frequency 10 GHz
Number of RBs 100
Subcarrier spacing 15 kHz
TTI duration 1 ms
Transmit power 35 dBm
UEs Speed 3 km/h
Number of UEs 100
Number of slices 3
Simulation rounds 200
TTI 1000
Throughput req. rreq

embb=20 and rreq
embb=5 Mbps

Latency req. dreq
embb = 30, dreq

urllc = 1, and dreq
mmtc = 50 ms

Requested thr. µembb = 20, µurllc = 5, and µmmtc = 0.1 Mbps

The scenario considered is shown in Fig. 1, where a
single antenna BS is positioned at the top corner of a
factory hall serving UEs with three different use cases
corresponding to the eMBB, URLLC and mMTC appli-
cations explained in the Sub-section II-C. To make the
scenario closer to reality, we have extracted the factory
hall measurements from [7], which are measurements of
an actual factory hall in Nuremberg, Germany. The BS
serves 100 UEs, which are uniformly distributed inside of
the factory hall, being 20 UEs associated to eMBB, 20 UEs
associated to URLLC, and 60 UEs associated to mMTC
applications. The industrial channel model contains 100
RBs to be distributed among slices and UEs using the
inter- and intra-slice scheduling and an equally divided
power allocation among RBs. Furthermore, the UEs are
moving at 3 km/h and the system has 3 slices (1 for eMBB,
1 for URLLC, and 1 for mMTC).

We divided the 200 simulation rounds generated by the
QuaDRiGa simulation into a training and testing set, in
which the former contains 160 rounds, and the latter in-
cludes 40 rounds, totalizing 160000 and 40000 simulations

Fig. 1: Scenario with a BS at left top corner, three use
cases UEs (sensor, mobile phone, and robotic arm) inside
a factory hall.

steps for the training and testing process. Therefore, the
proposed RL agent and the baseline agent train over the
160 simulation rounds and are tested in the remaining 40.

Fig. 2 shows the Cumulative Distribution Function
(CDF) of the average served throughput rate for each slice
using the proposed method ssr_protect and the baseline ssr
over the test set. The throughput requirements are 20 Mbps
and 5 Mbps for eMBB and URLLC slices, respectively.
Note that we do not add mMTC throughput requirements
since it does not have stringent throughput requirements.
The baseline and the proposed method did not fulfill the
20 Mbps requirement for the eMBB slice in most parts of
the simulation. Still, the baseline method obtained a higher
throughput rate to the eMBB slice than our proposed
method. When considering the throughput requirement for
URLLC slice, the proposed method fulfilled the 5 Mbps
requirement over the entire simulation round, and the
baseline accomplished it in almost the entire simulation.
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Fig. 2: CDF of the average throughput rate for each slice.

Fig. 3 shows the buffer delay per slice obtained using
the baseline and the proposed method. The mMTC and
eMBB slice delay requirements were fulfilled by all the
RRS agents. Still, when observing the URLLC slices, the
proposed method obtained a lower delay value fulfilling
the URLLC slice requirement over the entire simulation
round, while the baseline method kept the buffer delay
above the 1 ms requirement defined to the URLLC slice.

As we can observe, the throughput and delay analyses
are insightful but incomplete when investigating the QoS
requirements fulfillment. They offer a focused inspection
of a specific network requirement while the agent aims to
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Fig. 3: Buffer delay obtained per slice.

maximize the slice requirements fulfillment. Therefore, an
important metric is the number of requirement violations
that account for the number of times the network require-
ment was not fulfilled. Moreover, sometimes the network
resources are insufficient to provide the throughput and
delay requirements, and the RRS agent should prioritize
the most important slices to protect critical applications,
represented by the URLLC slice in our simulation.

Fig. 4 shows the average number of violations and the
standard deviation using the baseline and the proposed
method over the entire test set. The proposed method
obtained fewer slice requirement violations than the base-
line with greater stability. Furthermore, the number of
URLLC violations was expressively reduced in relation to
the number of URLLC violations obtained by the baseline
method. Therefore, the proposed method was able to
prioritize the URLLC slice to protect critical applications
and also minimize the total number of violations in the
network. Even with the baseline obtaining better perfor-
mance concerning the served throughput to the eMBB
slice, in general, the requirement fulfillment performance
of the proposed agent got a better balance of the network
metrics by protecting the URLLC slice and obtaining a
circumstantial decrease in the number of slice violations.
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Fig. 4: Average number of violations and the standard
deviation.

V. Conclusions

We proposed an RRS RL agent based on the SAC
technique for 4.0 Industry considering RAN slicing. The

RRS was responsible for orchestrating the radio resources
among the slices to fulfill the slice requirements and
protect the URLLC slice in relation to the other slices
when the number of RBs available is not sufficient to
fulfill all slice requirements. The proposed SAC RL agent
outperformed the baseline with a smaller number of slice
violations and by prioritizing critical applications repre-
sented by URLLC slice. This paper showed preliminary
results considering only one BS. As future works, we
intend to extend this scenario to a multi-cell case as in [14]
and deal with inter-cell interference mitigation.

Acknowledgment

This work was supported partially by RNP, with re-
sources from MCTIC, Grant No. 01245.010604/2020-14,
under the Brazil 6G Project of Instituto Nacional de
Telecomunicações (Inatel), Brazil.

References
[1] M. Polese, L. Bonati, S. D’Oro, S. Basagni, and T. Melodia, “Colo-

RAN: Developing machine learning-based xapps for open RAN
closed-loop control on programmable experimental platforms,”
IEEE Transactions on Mobile Computing, pp. 1–14, 2022.

[2] Y. Wu et al., “A survey of intelligent network slicing management
for industrial IoT: Integrated approaches for smart transportation,
smart energy, and smart factory,” IEEE Communications Surveys
& Tutorials, vol. 24, no. 2, pp. 1175–1211, 2022.

[3] M. Yan et al., “Intelligent resource scheduling for 5G radio access
network slicing,” IEEE Transactions on Vehicular Technology,
vol. 68, no. 8, pp. 7691–7703, 2019.

[4] J. Mei et al., “Intelligent radio access network slicing for service
provisioning in 6G: A hierarchical deep reinforcement learning
approach,” IEEE Transactions on Communications, vol. 69, no. 9,
pp. 6063–6078, 2021.

[5] S. Jaeckel, L. Raschkowski, L. Borner, K. Thiele, F. Burkhardt,
and E. Eberlein, “QuaDRiGa - quasi deterministic radio channel
generator, user manual and documentations,” 2021.

[6] T. Jiang, J. Zhang, P. Tang, L. Tian, Y. Zheng, J. Dou, H. Asplund,
L. Raschkowski, R. D’Errico, and T. Jämsä, “3GPP standardized
5g channel model for iiot scenarios: A survey,” IEEE Internet of
Things Journal, vol. 8, no. 11, pp. 8799–8815, 2021.

[7] S. Jaeckel et al., “Industrial indoor measurements from 2-6 ghz
for the 3GPP-NR and QuaDRiGa channel model,” in IEEE 90th
Vehicular Technology Conference, 2019, pp. 1–7.

[8] X. Li, R. Ni, J. Chen, Y. Lyu, Z. Rong, and R. Du, “End-to-end
network slicing in radio access network, transport network and core
network domains,” IEEE Access, vol. 8, pp. 29 525–29 537, 2020.

[9] B. Khodapanah, A. Awada, I. Viering, J. Francis, M. Simsek, and
G. P. Fettweis, “Radio resource management in context of network
slicing: What is missing in existing mechanisms?” in Proc. of IEEE
Wireless Communications and Networking Conference, 2019, pp.
1–7.

[10] R. Schmidt, C.-Y. Chang, and N. Nikaein, “Slice scheduling with
QoS-guarantee towards 5G,” in Proc. of IEEE Global Communica-
tions Conference (GLOBECOM). IEEE, 2019, pp. 1–7.

[11] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic:
Off-policy maximum entropy deep reinforcement learning with a
stochastic actor,” in Proc. of International conference on machine
learning. PMLR, 2018, pp. 1861–1870.

[12] T. P. Lillicrap et al., “Continuous control with deep reinforcement
learning,” arXiv preprint arXiv:1509.02971, 2015.

[13] R. Li et al., “The LSTM-based advantage actor-critic learning for
resource management in network slicing with user mobility,” IEEE
Communications Letters, vol. 24, no. 9, pp. 2005–2009, 2020.

[14] W. V. Fernandes Mauricio, F. R. Marques Lima, A. Taufik,
T. Ferreira Maciel, and D. Aguiar Sousa, “Resource
allocation for energy efficiency and QoS provisioning,”
Journal of Communication and Information Systems, vol. 34,
no. 1, pp. 224–238, Oct. 2019. [Online]. Available:
https://jcis.sbrt.org.br/jcis/article/view/665


