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Simultaneous Factorization of Multiple Khatri-Rao
and Kronecker Matrix Products in MIMO systems

Walter da C. Freitas Jr., Lucas Abdalah and André L. F. de Almeida

Abstract— In this paper, we present a singular value
decomposition (SVD)-based rank-one approximation algorithm
to simultaneously estimate each symbol matrix of the multiple
Khatri-Rao product-based space-time (MKRST) coding scheme.
We formulate this estimation problem within a multiple input
multiple output (MIMO) space-time coding scenario. Our
simulation results demonstrate that the proposed algorithm
is capable of avoiding the error propagation inherent to the
iterative closed-form solution in the context of MKRST coding.
Furthermore, the algorithm maintains the same complexity as
the high-order SVD (HOSVD) approach.

Keywords— Tensor, PARAFAC, Khatri-Rao and Kronecker
product

I. INTRODUCTION

During the last decade the use of tensor decompositions
in wireless telecommunications have been widely studied.
Tensors are used to represent and analyse multidimensional
data. Regarding systems where the signaling transmission
could be sent at the spatial, temporal, code and/or frequency
dimensions, the received signal can be modeled as a
higher-order tensor (usually, third- and fourth-order tensors),
where each dimension, or mode, is associated with a type of
diversity present in the signal.

Among the various tensor models, the PARAFAC
model stands out prominently. The utilization of the
PARAFAC model is prevalent in telecommunications,
particularly when the data matrix can be organized in a
three-dimensional array [1]. In many instances, two of these
three dimensions correspond to space and time, while the third
dimension of the third-order tensor depends on the specific
wireless communication system. The practical motivation for
employing tensor modeling in telecommunications originates
from the ability to simultaneously leverage multiple (more
than two) forms of diversity for tasks such as multiuser
signal separation, equalization, and channel estimation. These
tasks benefit from model uniqueness conditions that are more
relaxed compared to conventional matrix-based approaches.

Tensor-based receivers have been successfully used for
joint symbol and channel estimation in cooperative MIMO
communications. In this context, the usefulness of tensor
decompositions to derive semiblind receivers has been
demonstrated in several works (see, e.g., [2], [3] and references
therein). Tensor-based receivers also have been proposed for
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one-way two-hop MIMO relaying, [4]–[6] and for multi-hop
relaying [7].

Traditionally, methods proposed for fitting the PARAFAC
model are iterative and rely on the alternate least square
(ALS) algorithm. However, the estimated parameters are often
obtained after a large number of iterations, and convergence
to the global optimum is not guaranteed. To address the
drawbacks of the ALS approach, such as slow convergence,
susceptibility to local minima, and limited capacity to account
for specific structures, non-iterative or closed-form solutions
can be employed for estimating the PARAFAC factors from
noisy data.

In a non-iterative approach presented in [8], the authors
proposed a method for estimating the parameters of a
PARAFAC decomposition. This method is applicable when
at least one factor exhibits a Toeplitz structure resulting
from the Khatri-Rao product of the two other matrix factors,
which are assumed to have full column rank. For scenarios
involving more than two matrices, this problem can be
tackled iteratively by determining the factor matrices through
a two-by-two search. Nevertheless, an inherent limitation of
this iterative algorithm emerges when the number of factor
matrices increases, mainly due to the propagation of errors,
leading to a decline in its performance.

Compared with conventional least square (LS) receivers,
closed-form tensor-based receivers present two main
advantages: i) they avoid accumulation of channel estimation
errors, and ii) they can operate under less restrictive (and
more flexible) conditions on the required number of antennas,
as shown in [9]. In such closed-form tensor-based receivers
we may encounter situations where our observations are an
estimate of a Khatri-Rao product or a Kronecker product
which we would like to factorize.

To overcome this problem, we propose a least-square
simultaneous SVD rank-one factorization which operates in
a parallel way for estimating each symbol matrix of the
factorization of Khatri-Rao (and Kronecker) products. In
this work, we present a SVD-based rank-one approximation
algorithm to estimate in parallel each symbol matrix of
the Khatri-Rao (and Kronecker) products. We formulated
this estimation problem within a MIMO space-time coding
scenario. Our simulation results demonstrate that the proposed
algorithm is capable of avoiding the error propagation inherent
in the iterative closed-form solution when dealing with
MKRST coding. Remarkably, the proposed algorithm achieves
this while maintaining the same complexity as the HOSVD
approach.

The paper is organized as follows. In Section II we describe
the PARAFAC tensor decomposition and its application as a
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model to the MIMO space-time system. Section III describes
the simultaneous SVD-based rank-one factorization and the
case when one of the factors is known. Section IV presents
simulation results and in section V we discuss the conclusions
and perspectives.

Notation: Scalars are denoted by lower-case letters (a, b, . . .),
vectors are written as boldface lower-case letters (a,b, . . .),
matrices as boldface capitals (A,B, . . .), and tensors as
calligraphic letters (A,B, . . .). Ai. ∈ C1×R denotes the i-th
row of A ∈ CI×R. A.r ∈ CI×1 is the r-th column of A.
The operator diag(a) forms a diagonal matrix from its vector
argument. The Kruskal-rank (k-rank) of A, denoted by kA, is
the greatest integer k such that every set of k columns of A is
linearly independent. The Kronecker and Khatri-Rao products
are denoted by ⊗ and ⋄, respectively:

A ⋄B =

 Bdiag(A1.)
...

Bdiag(AI.)

 , (1)

with A = [A.1, . . . ,A.R] ∈ CI×R, B = [B.1, . . . ,B.R]
∈ CJ×R. We use the superscripts (·)T , (·)H , (·)−1, (·)†
and (·)∗ for matrix transposition, Hermitian transposition,
inversion, the Moore-Penrose pseudo inverse of matrices, and
complex conjugation, respectively. A third-order tensor A ∈
CI×J×K , with entries denoted as ai,j,k, can be restructured
into mode-n matrices. In this reorganization, the mode-n
elements form the columns of the resulting matrix. The
matrices AJK×I , AKI×J , and AIJ×K represent the tall
mode-1, mode-2, and mode-3 unfoldings, respectively. Here,
ai,j,k corresponds to [AJK×I ](k−1)J+j,i, [AKI×J ](i−1)K+k,j ,
and [AJI×K ](j−1)I+i,k. The operator vec(·) transforms a
matrix into a column vector by stacking the columns of its
matrix argument while the operator unvec(·) corresponds to
the inverse transformation.

II. PARAFAC TENSOR DECOMPOSITION

Let X ∈ CI×J×K be a third-order tensor with entries xi,j,k;
i = 1, 2, · · · , I , j = 1, 2, · · · , J and k = 1, 2, · · · ,K. The
third order tensor could be decomposed as

X = IM ×1 A
(1) ×2 A

(2) ×3 A
(3), (2)

where IM is a identity tensor, A(1) ∈ CI×M , A(2) ∈ CJ×M

and A(3) ∈ CK×M . By stacking these matrix slices, we get
three unfolded matrices XJK×I , XKI×J and XJI×K that
contain all the data of the tensor X . It can be shown that
these unfolded matrices are given by:

XJK×I =
(
A(3) ⋄A(2)

)
A(1)T ,

XKI×J =
(
A(1) ⋄A(3)

)
A(2)T , (3)

XJI×K =
(
A(2) ⋄A(1)

)
A(3)T .

The problem of estimating the factors of a Khatri-Rao (and
Kronecker) product, as seen in Equation (3), is commonly
referred to as the nearest Kronecker product (NKP) problem.
Its origins can be traced back to its initial exposition in
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. . .
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H(sd)

Fig. 1. MIMO system model.

[10], and then in [3]. The fundamental concept underlying
this factorization approach is that any product can be viewed
as a collection of all pair-wise products of its elements.
This is equivalent to a rank-one matrix constructed from the
outer product of two vectors if we arrange the corresponding
elements into the matrix in the correct manner. Therefore, in
the presence of noise, the matrix approximates a rank-one
structure. Yet, the truncated SVD provides the best rank-one
approximation in the LS sense. A similar problem was also
tackled in [11], and we review this problem next.

Given the Khatri-Rao product D = A ⋄ B, the factor
matrices A ∈ CI×M and B ∈ CJ×M can be estimated by
calculating the rank-one approximation of the matrix defined
for each column (m = 1, · · · ,M ) as

F.m = unvecI×J [D.m] = (A).m(B)T.m. (4)

Defining the SVD of F.m = UΣVH , the m-th column of A
and B are given by (Â).m =

√
σ1V

∗
.1 and (B̂).m =

√
σ1U.1,

where U.1 and V.1 represent the first column of U and
V associated with the largest singular value σ1 of F.m,
respectively.

Note that the estimates of the factor matrices (A,B) of
the Khatri-Rao product A ⋄ B are obtained up to a scalar
scaling factor for each column mS = 1, · · · ,M . Therefore,
to eliminate these scaling ambiguities, one needs to know one
element for each column, i.e. one row of A or B, the a priori
knowledge of the first row of each Sq for q = 1 · · · , Q, is
needed to carry out the MKRST decoding without ambiguity.

In cases where the product involves more than two matrices,
such as when Q > 2, let A = A1 ⋄ A2 ⋄ · · · ⋄ AQ.
By associating A = A1 and B = A2:Q, this process can
be iteratively repeated to estimate all the factors Aq (q =
1, 2, . . . , Q) of the product.

A. Example of a PARAFAC Tensor Decomposition – MIMO
MKRST Systems

We consider a one-way MIMO system, assuming a
simplified Khatri-Rao space-time (KRST) coding consisting
of a time spreading of the symbol matrix by means of a code
matrix C ∈ CP×Ms , where P is the spreading length. The
system is illustrated by means of Fig. 1, where Ms and Md

denote the numbers of antennas at the source and destination
nodes, with (Ms,Md) ≥ 2. The source-destination channel,
H(sd) ∈ CMd×Ms is assumed to be Rayleigh flat-fading
and quasi-static during the transmission protocol. Let X̃ =
X + N be the noisy received signal tensor, the entries of
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the noise tensor N being zero-mean circularly-symmetric
complex-valued Gaussian random variables.

The source transmits the MKRST encoded symbols
proposed in [6] and defined as multiple Khatri-Rao products
of Q ≥ 2 symbol matrices Sq ∈ CNq×Ms with q = 1, · · · , Q,

i.e., S = S1 ⋄ · · · ⋄ Sq ⋄ · · · ⋄ SQ =
Q
⋄

q=1
Sq ∈ CN×Ms , with

N =
Q∏

q=1
Nq . The signals received at the destination are given

by
X̃

(sd)
Md×PN = H(sd)(C ⋄ S)T +NMd×PN , (5)

where NMd×PN is the noise term added at the relay.
These signals define a third-order tensor X̃ (sd) ∈

CMd×P×N which satisfies a PARAFAC model
∥H(sd),C,S;Ms∥, with S =

Q
⋄

q=1
Sq on the coding used

at the source.
Assume the code matrix C have a truncated discrete Fourier

transform (DFT) structure and is known at the destination
node. We derive a closed-form receiver for jointly estimating
the individual channel (H(sd)) and the transmitted symbols
(Sq , q = 1, · · · , Q).

The transmitted symbol matrix S can be estimated at the
destination using the following tall 3-mode unfolding of X̃ (sd)

by permuting the matrix factors

X̃
(sd)
MdN×P =

(
H

(sd)
Md×Ms

⋄ S
)
CT +NMd×PN . (6)

The source code matrix C being assumed
column-orthonormal (CTC∗ = IMs

), which implies P ≥ Ms,
a LS estimate of the Khatri-Rao product R = H

(sd)
Md×Ms

⋄ S
is given by

R̂ = X̃
(sd)
MdN×PC

∗ ∈ CMdN×Ms . (7)

Once R is estimated, the factor matrices (H
(sd)
Md×Ms

,S)
of the Khatri-Rao product can be obtained by applying the
SVD rank-one factorization. This approach avoids the error
propagation that occurs when Equation (4) is applied in a
two-by-two search.

III. SIMULTANEOUS SVD RANK-ONE FACTORIZATION

In the general case we have, Sq ∈ CNq×Ms (or Sq ∈
CNq×Msq ), with q = 1, · · · , Q, such that Ŝ =

Q
⋄

q=1
Sq (or

Ŝ =
Q
⊗
q=1

Sq). The decoding problem consists in estimating

the sub-matrices Sq ∈ CNq×Ms (or Sq ∈ CNq×Msq ), with

q = 1, · · · , Q, such that Ŝ =
Q
⋄

q=1
Sq . This problem can be

solved iteratively by determining the symbol matrices Sq with
a two-by-two search. This basic algorithm was proposed in
[8] for estimating two matrix factors of a Khatri-Rao product
associated with a third-order PARAFAC model. This solution
is named here as successive approach. A drawback of this
iterative algorithm is that its performance degrades when Q
increases, due to error propagation.

To overcome this problem, we propose a decoding
procedure which operates in a parallel way for estimating
each symbol matrix. Before presenting this procedure, let us

recall the following formula for permuting the matrix factors
(A ∈ CI×R,B ∈ CJ×S) of a Kronecker product

A⊗B = ΠI,J (B⊗A)ΠS,R (8)

where ΠI,J and ΠS,R are two permutation matrices of
dimensions (IJ × JI) and (SR × RS), respectively, defined
as

ΠI,J =
∑
i

∑
j

(
e
(I)
i e

(J)T

j

)
⊗

(
e
(J)
j e

(I)T

i

)
, (9)

ΠS,R =
∑
s

∑
r

(
e(S)
s e(R)T

r

)
⊗

(
e(R)
r e(S)S

s

)
, (10)

e
(J)
j being the j-th canonical basis vector of the Euclidean

space RJ .
To illustrate the proposed decoding procedure, consider the

case Q = 4, with S = S1⊗S2⊗S3⊗S4, denoted as S(1,2,3,4)

for simplicity. The matrices S1 and S4 can be estimated by
applying the following two decompositions of S

S = S1 ⊗ S(2,3,4) with S(2,3,4) = S2 ⊗ S3 ⊗ S4,(11)
S = S(1,2,3) ⊗ S4 with S(1,2,3) = S1 ⊗ S2 ⊗ S3.(12)

For estimating S2, we use the following equation obtained
by permuting the factors S1 and S2

S(2,1,3,4) = ΠN2,N1
(S1 ⊗ S2)ΠMs1

,Ms2
⊗ S3 ⊗ S4

= (ΠN2,N1
⊗ IN3N4

)︸ ︷︷ ︸
Πrow

2 −row permutation

S
(
ΠMs1

,Ms2
⊗ IMs3

Ms4

)︸ ︷︷ ︸
Πcolumn

2 −column permutation

= S2 ⊗ S(1,3,4).
(13)

Applying such idea allows to estimate S2 and S(1,3,4).
Similarly, by permuting S3 with S1 ⊗ S2, we obtain

S(3,1,2,4) =(ΠN3,N1N2
⊗ IN4

)︸ ︷︷ ︸
Πrow

3

S
(
ΠMs1Ms2 ,Ms3

⊗ IMS4

)︸ ︷︷ ︸
Πcolumn

3

=S3 ⊗ S(1,2;4).
(14)

In summary, for Q = 4, we can use Eqs. (11), (13), (14) and
(12) to estimate S1, S2, S3 and S4 simultaneously. Such an
approach can be generalized to any Q. Each symbol matrix
Sq is estimated by applying the following equation

Sq⊗S1 · · ·⊗Sq−1⊗Sq+1⊗· · ·⊗SQ = Πrow
q SΠcolumn

q , (15)

where

Πrow
q = ΠNq,N1···Nq−1

⊗ INq+1···NQ
, (16)

Πcolumn
q = ΠMs1 ···Msq−1

,Msq
⊗ IMsq+1

···MsQ
. (17)

Besides avoiding error propagation, another advantage of this
approach is that the estimation of the symbol matrices Sq ,
q = 1, · · · , Q, can be parallelized. In the case of the MKRST
coding where S = S1 ⋄ · · · ⋄Sq ⋄ · · · ⋄SQ, the same procedure
can be applied without column permutation.
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IV. SIMULATION RESULTS

Simulation results are provided to evaluate the performance
of the proposed simultaneous SVD rank-one factorization in
terms of bit error rate (BER) and complexity which are plotted
as a function of the symbol energy to noise spectral density
ratio (Es/N0). Each BER curve represents an average over at
least 4 × 104 Monte Carlo runs. Each run corresponds to a
different realization of the channels, transmitted symbols and
noise. The symbols are randomly drawn from a unit energy
quadrature phase-shift keying (QPSK) alphabet. The number
of data symbols and antennas are Nq = Ms = Md = 2. Recall
that the code matrices are DFT matrices.

Figure 2 compares the BER performance per layer (Sq) of
the proposed simultaneous approach for the cases in which
the MKRST has Q = 3. We assume that the first row
is composed of all ones in the symbol matrix to enable
ambiguities elimination. As a reference for comparison, we
present the performance of the successive approach, wherein
the estimation of Sq is conducted through a two-by-two
search and utilizing the HOSVD algorithm [1]. The experiment
demonstrates that, in the sequential decoding approach, errors
introduced in earlier stages can have a cascading effect on
subsequent estimations as the decoding process progresses.
Layers that are decoded earlier are particularly vulnerable
to errors because they depend on estimates derived from
previous factorization steps. Consequently, these errors have
the potential to accumulate and exacerbate as decoding
proceeds through subsequent layers, ultimately impacting its
BER.

Figure 3 compares the BER performance of the proposed
simultaneous approach for the cases of the MKRST has Q =
4. As a reference for comparison, we show the performance
of the successive approach, where the estimation of Sq are
done in a two-by-two search and the HOSVD algorithm.
Differently of the case which the Khatri-Rao factorization is
done successively, doing the factorization simultaneously as
proposed, we are able to avoid the error propagation improving
the whole BER performance achieving a result very close
to the HOSVD. Once Q increases, also the gap between
the successive and simultaneous approaches due to the error
propagation.

Figure 4 compares the computational complexity of the
three approaches in terms of the number of antennas at the
source (Ms). The dominant complexity cost is associated
with the SVD-based rank-one approximations to compute
the factors of the Khatri-Rao matrix products. Note that,
for a matrix of dimensions J × K, the complexity of its
SVD is O(min(J,K)JK) [12]. Therefore, the computational
complexity of the three approaches when Q = 3 are:

O(min(N1, N2N3)N1N2N3Ms) + . . .

O(min(N2, N3)N2N3Ms)
(18)

for the successive case, equation 18,

O(min(N1, N2N3)N1N2N3Ms) + . . .

O(min(N1N2, N3)N1N2N3Ms) + . . .

O(min(N1N3, N2)N1N3N2Ms)

(19)

for the simultaneous, equation 19, and

Ms(O(min(N1, N2N3)N1N2N3) + . . .

O(min(N1N2, N3)N1N2N3) + . . .

O(min(N1N3, N2)N1N3N2))

(20)

for the HOSVD, equation 20.
We can observe that as the number of antennas at the source

(Ms) increases, the computational complexity impact becomes
higher in the successive approach due to the lower-dimensional
SVD computations performed in each step. However, the
successive approach is prone to error propagation. On the
other hand, the computational complexity of the simultaneous
approach and HOSVD is nearly identical.
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Fig. 2. BER performance per each matrix of the MKRST Q = 3
coding scheme.
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V. CONCLUSIONS

The MKRST coding is a valuable tool in signal processing,
particularly applicable to multichannel systems such as
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MIMO and array processing. Nevertheless, existing methods
for simultaneous estimation of each symbol matrix in
MKRST coding suffer from limitations regarding complexity
performance and error propagation. To overcome these
challenges, this work proposes a SVD-based rank-one
factorization technique for MIMO space-time coding
scenarios. The proposed technique’s performance is
extensively evaluated through simulations and compared
with a state-of-the-art method, focusing on two crucial
aspects: BER and computational cost, specifically in relation
to the number of source antennas.

The main findings of the study reveal that the simultaneous
approach and HOSVD demonstrate similar BER performance,
while the successive approach may accumulate errors in earlier
stages, resulting in slightly inferior overall BER performance.
However, the successive approach provides a significant
advantage in terms of computational complexity compared to
both the simultaneous approach and HOSVD, particularly as
the number of antennas increases. These outcomes highlight
a trade-off between error propagation and computational cost.
In the presented experiments, the successive approach yielded
slightly higher overall BER, but its computational complexity
was reduced by half compared to the other approaches.

Despite the promising results and contributions of this study,
it is important to acknowledge its limitations. Firstly, the
evaluation of the proposed technique was limited to simulated
scenarios, which may not fully capture the complexities and
variations present in real-world environments. Furthermore,
the comparison of the proposed approach was primarily
focused on a specific state-of-the-art method. Considering
a broader range of comparative methods would offer
a more comprehensive understanding of the proposed
technique’s strengths and weaknesses, further enhancing its
applicability and performance assessment. Addressing these
limitations through future research would contribute to a
more comprehensive and robust understanding of the proposed
technique’s effectiveness.

In conclusion, the simulation results provide substantial

evidence supporting the effectiveness of the proposed
simultaneous techniques. It successfully mitigates the
adverse impact of error propagation on BER performance,
outperforming the successive approach. Moreover, the
simultaneous approach achieves BER performance
comparable to that of the HOSVD while maintaining a
similar computational complexity. Although the successive
approach exhibits lower computational complexity, it comes
at the cost of increased BER. These findings emphasize
the potential of the proposed approach in improving the
performance of communication systems, particularly in
scenarios with a higher number of symbols.
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