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Affine Projection Adaptive Filters for the
Identification of Sparse Systems

Cyro S. Hemsi

Abstract— In this paper, we focus on the identification of sparse
systems, as is often the case in telecommunications and acoustics
applications, using sparse affine projection (AP) algorithms,
expected to perform better than sparse versions of the LMS
and NLMS for a highly correlated input signal. Initially, we
offer a concise review on the AP adaptive filter theory, followed
by the analysis of sparse AP zero attractors from a geometric
point-of-view. Then, we propose a sparse AP based on the
SparseStep approximation of the `0-pseudo-norm. Finally, the
proposed algorithm is numerically validated by comparing it with
well-known sparse AP filters.

Keywords— Affine Projection, Adaptive Filters, System Identi-
fication, Sparse, LMS Algorithm.

I. INTRODUCTION

Often, in telecommunications and acoustics, the systems to
be identified are known a priori to be sparse, i.e., few of
the impulse response coefficients are large, while most of
them are close to zero. In applications such as broadband
channel estimation and echo cancellation, the conventional
algorithms employed in systems identification are not capable
of exploiting prior knowledge about the system sparsity, both
to accelerate convergence and improve performance. This
way, several sparse adaptive filters based on the Least Mean
Square (LMS) algorithm [1], [2], [3] have been proposed in
the literature [4], [5], [6], [7]. Norm-based sparse adaptive
algorithms require choosing a sparsity-inducing penalty in the
cost function [5]. As directly penalizing the `0-pseudo-norm,
i.e., the number of non-zero elements, is an NP-hard problem,
more practical solutions replace it by the `1-norm [4], `0
approximations [6], [8], [5] or heuristic approaches [4], [9].

The LMS family is often chosen in practice due to its
reduced computational complexity [1], [2], [3], however, the
conventional LMS filter may become unstable due to the vari-
ations in the input signal level. The Normalized LMS (NLMS)
algorithm uses a normalized step-size parameter and achieves
better stability and convergence speed. However, the perfor-
mance of both filters is severely degraded in practical scenarios
where the input signal is highly correlated (colored), leading
to slow convergence and high steady-state error/misadjustment
due to estimation noise. In order to overcome this, the affine
projection (AP) algorithm has been developed in [10]. The AP
algorithm belongs to the so-called data-reusing family, where,
at each time instant, past data are reused. In this paper we
focus on sparse AP algorithms, as a continuation of our work
[11]. This paper proposes a sparse AP adaptive filter whose
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cost function is penalized by the SparseStep approximation
of the `0-pseudo-norm [12], which is a simple but precise
continuous function.

The contributions of this paper are twofold: (a) We offer a
brief discussion on the geometric interpretation of sparse AP
algorithms; (b) Furthermore, we extend the sparse adaptive
filter SS-LMS proposed in [11] to the AP context. Finally, the
performance of the so-called SS-AP is numerically validated
by comparison with other sparse AP adaptive filters.

This paper is organized as follows. Section 2 provides
background on the AP algorithm as an extension of gradient-
descent adaptive filters; in Section 3, the proposed SS-AP
update equation is derived. Section 4 provides numerical
simulation and results, followed by Section 5, where final
conclusions are drawn.

II. PROBLEM FORMULATION

Let us consider an M-tap transversal finite-impulse res-
ponse adaptive filter and real-valued signals. We denote vec-
tors/matrices by boldface letters. Given the M×1 input vector
u(n) and the tap-weight vector w(n), at any sample n, the
filter output is given by y(n) = uT (n)w(n). In a system
identification problem, adaptive filters are used to estimate
the unknown coefficients of the system’s impulse response.
At each iteration, the adaptive filter output ŷ(n), obtained
with estimated coefficients ŵ(n), is subtracted from a (noisy)
observation d(n) of the reference (desired) signal, resulting in
the estimation error ê(n) , d(n)− ŷ(n). The estimated ŵ(n)
are iteratively adjusted until the error ê(n) has been minimized
in the mean-square sense.

The LMS update equation is given by:

(1)ŵ(n+ 1) = ŵ(n) + µu(n)ê(n),

where µ is a positive step-size. The update vector ∆ŵ(n) from
the current ŵ(n) to ŵ(n+ 1) is:

(2)∆ŵ(n) = µ[d(n)− uT (n)ŵ(n)]u(n),

being an affine function of ŵ(n). The filter will converge
provided u(n) and d(n) are joint stationary and µ is chosen
adequately. However, in eq. (2), ∆ŵ(n) is directly propor-
tional to the time-varying level of the input signal u(n), so
when the input signal is large, the amount of update is large
and the algorithm becomes unstable, so it is difficult to adjust
the value of µ.
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A. Normalized LMS

The NLMS algorithm normalizes the vector ∆ŵ(n) by the
squared Euclidean norm of the input vector u(n), leading to
a more stable algorithm with faster convergence. The NLMS
update equation can be derived from the following constrained
optimization problem [1], [2], [3]:

minimize
ŵ(n+1)∈RM×1

‖ŵ(n+ 1)− ŵ(n)‖2

subject to d(n)− uT (n)ŵ(n+ 1) = 0
(3)

where ‖·‖2 is the squared Euclidean norm and assuming
measurement noise is negligible. The difference between the
updated coefficient vector ŵ(n + 1) and the current one is
minimized (minimal disturbance principle), while forcing to
zero the a posteriori error (i.e., computed using ŵ(n + 1)).
The resulting NLMS update equation is given by:

(4)ŵ(n+ 1) = ŵ(n) +
µN

ε+ ‖u(n)‖2
u(n)ê(n),

where the normalized step-size µN is dimensionless and
invariant under scaling of the input signal, in the range 0 <
µN ≤ 2. Also ε > 0 is a regularization factor that prevents
division by a value close to zero.

The optimization problem in eq. (3) can have the following
geometric interpretation in the special case of µN = 1 and
ε = 0. Let us consider the Hilbert space H := RN , as in [13].
At each iteration n, the coefficient vector ŵ(n) is represented
by a point in H and the constraint from eq. (3) leads to an
affine subspace (hyperplane) of H, namely:

(5)Πn , {w ∈ RN | d(n)− 〈u(n),w〉 = 0},

where 〈·, ·〉 is the inner product. Note that d(n) is a translation,
so Πn is orthogonal to u(n) and passes through the point

d(n)
u(n)Tu(n)

u(n). Among infinitely many vectors w ∈ Πn the
algorithm selected the closest one to ŵ(n) in the Euclidean
norm sense, i.e., the orthogonal projection PΠn

of ŵ(n) onto
Πn:

(6)PΠn(ŵ(n)) = ŵ(n)− u(n)
〈u(n), ŵ(n)〉
uT (n)u(n)

.

By inspection, eq. (6) is the NLMS update equation in eq. (4)
assuming µN = 1 and ε = 0, that is, ŵ(n+1) = PΠn

(ŵ(n)).
Figure 1, created using the Matlab drawLA toolbox [14],

illustrates the geometric interpretation in R3 of the adaptive
algorithms discussed in this paper, assuming µN = 1 and
ε = 0. The affine subspaces Πn−1 and Πn, respectively in red
and blue in the figure, are translated linear subspaces (planes),
where the estimated coefficient vectors should be located.
Given the vector of coefficients ŵ(n) (point 1) in Πn−1 (red),
the constraint in eq. (5) imposes that the NLMS updated vector
ŵ(n+ 1) is located in the subspace Πn (blue). Furthermore,
from eq. (6), the updated vector is the orthogonal projection
of ŵ(n) onto the subspace Πn (point 2). Note that, in the
absence of noise, the optimum coefficient vector wo should
be in the intersect subspace Πn ∩Πn−1 (point 3). The figure
also shows, in green, the subspaces where sparse coefficient
vector are located. Each of these subspaces is aligned with
two coordinate axes of R3. Finally, note that when the angle
between the input vectors u(n) and u(n− 1) is close to zero

or 180◦, i.e., the input vectors are highly correlated, the rate
of convergence towards wo is slow.

Fig. 1: Geometric interpretation of the algorithms.

B. Affine Projection

The AP algorithm is an extension of the NLMS, whose goal
is to improve the NLMS convergence rate for highly correlated
input data. Assuming that previous data is available, the AP
algorithm uses at each iteration the L most recent M×1 input
vectors u(n−i), for i = 0, . . . , L−1 (where L is the projection
order) and the corresponding desired responses d(n − i).
The algorithm assembles the M × L input matrix U(n) =[
u(n) u(n− 1) . . . u(n− L+ 1)

]
and the response

vector d(n) =
[
d(n) d(n− 1) . . . d(n− L+ 1)

]T
. The

filter output vector is given by:

(7)ŷ(n) = UT (n)ŵ(n)

and the estimation error vector is ê(n) , d(n)− ŷ(n).
The AP update equation is obtained by solving the following

constrained optimization problem [10], [15]:

minimize
ŵ(n+1)∈RM×1

‖ŵ(n+ 1)− ŵ(n)‖2

subject to d(n)−UT (n)ŵ(n+ 1) = 0L
(8)

Note that the multiple constraints in this problem reduce to
the one in eq. (3) when L = 1. Similarly to eq. (4), the AP
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adaptive filter update equation is given by:
(9)ŵ(n+ 1) = ŵ(n) + µNU(n)S(n)ê(n),

where µN is the normalized step-size and S(n) ,
(UT (n)U(n) + εIL)−1, where IL is the L × L identity
matrix. Alternatively, for ε = 0 and assuming U(n) is full
column rank, we can write the right-hand side as ŵ(n) +
µNU †(n)ê(n), where U †(n) = U(n)(UT (n)U(n))−1 is the
Moore–Penrose pseudo-inverse of U(n). This way, ŵ(n+ 1)
satisfies all the constraints in eq. (8) and is the orthogonal
projection of ŵ(n) onto the (also affine) intersect subspace
Π(n) , Πn ∩ Πn−1 ∩ · · · ∩ Πn−L+1. In this case, the update
vector ∆ŵ(n) is orthogonal to Π(n), rather than to Πn:

(10)∆ŵ(n) = µ[d(n)−UT (n)ŵ(n)]U †(n),

Going back to Figure 1, the AP updated coefficient vector
(point 4) is in the intersect hyperplane Πn ∩ Πn−1 (L = 2),
thus satisfying both constraints uT (n)ŵ(n + 1) = d(n) and
uT (n−1)ŵ(n+1) = d(n−1) and is the orthogonal projection
of point 1.

C. Sparse Affine Projection
Firstly, we define an N -length vector w as being k-sparse

if it has at most k ≤ N non-zero entries, i.e., ‖w‖0 ≤ k. The
set of all k-sparse vectors in RN is defined as:

(11)Σk , {w ∈ RN |‖w‖0 ≤ k}
and is not a subspace in RN , because the closure property for
vector addition does not hold for two element vectors in the
set with different supports. Instead, Σk consists of the union
of
(
N
k

)
subspaces of dimension k, each of which aligned with

k out of N coordinate axes of RN . Figure 1 shows Σ2, in
green, as the union of three subspaces of 2-sparse vectors.

Let us now add a sparsity-inducing penalty to the standard
AP optimization problem in eq. (8). The general solution for
the sparse AP optimization problem is developed in [16], [17],
leading to:

(12)ŵ(n+ 1) = ŵ(n) + µNU(n)S(n)ê(n)

+ µNλ[U(n)S(n)UT (n)− IM ] ∇‖ŵ(n+ 1)‖p,
where ‖·‖p, with p = 0 or 1, is a sparsity-inducing norm, ∇(·)
is the gradient vector and λ is a regularization parameter. The
implementation of eq. (12) requires the choice of a sparsity-
inducing penalty function, as discussed next. It also assumes
that ∇‖ŵ(n + 1)‖p ≈ ∇‖ŵ(n)‖p [16]. Several penalty
choices have been proposed in the literature, among the most
prominent are:
- `1-norm regularization. The first approach is the convex

relaxation of the `0- by the `1-norm, given by ‖w(n)‖1 =∑M−1
i=0
|wi(n)|, leading to the zero-attracting affine projec-

tion (ZA-APA) filter [16].
- `0-pseudo-norm approximations. The `0-pseudo-norm can

be approximated in several ways, such as the AP-SSI filter
in [17] and others [8], [7], [6].

- Heuristic approaches. In [16] the re-weighted zero attractor
RZA-APA is derived, in which the zero attraction now
depends on the tap-weight magnitudes. Other heuristic ap-
proaches are, for example, the proportionate NLMS (P-
NLMS) [9].

III. PROPOSED SPARSE AFFINE PROJECTION

We propose a new AP adaptive filter, namely the SS-AP,
derived from a smooth and continuous approximation of the
`0-pseudo-norm, expressed as a weighted version of the `2-
norm. This `0 approximation is the SparseStep proposed in
[12]:

(13)‖w(n)‖0 ≈
M−1∑
i=0

w2
i (n)

w2
i (n) + γ2

,

where 0 < γ2 � 1. Decreasing γ, the approximation for the
counting norm becomes more and more accurate. The gradient
of the `0-norm approximation in the previous equation can
be expressed as ∇‖w(n)‖0 , Θ(n)w(n), where Θ(n) is a
diagonal matrix, whose elements are the weights:

(14)θi,i =
2γ2

(w2
i + γ2)2

.

Fig. 2: Zero attractor functions.

Figure 2 compares the zero attractors of the ZA-APA, RZA-
APA and SS-AP algorithms, respectively, −λsgn(ŵ(n)),
−λsgn(ŵ(n))/(1 + δ|ŵ(n)|) and −λΘ(n)ŵ(n), for a single
coefficient wi. The ZA-APA attractor is always equal to ±λ,
therefore, it applies an uniform attraction to all coefficient va-
lues. Meanwhile, the RZA-APA attractor selectively depends
on the amplitude of each wi. The figure shows three families of
SS-AP attractors, with different slopes {−1/4,−1/2,−1} in
the linear region that can be observed when wi is close to zero.
Indeed, for |wi|≤ γ/2, the SS-AP attractor is approximately
linear with negative slope −2λ/γ2. Note that each SS-AP
curve is for a different value of γ, from 5e−3 to 1.5e−2, and
the parameter γ defines the range (interval of wi) for which the
zero attractor is active. Finally, the SS attractor is larger than
the RZA one when wi is close to γ, while the RZA attractor
is larger for wi � γ. In summary:
• |wi|≤ γ/2⇒ zero attractor is −2λ/γ2wi
• |wi|� γ ⇒ zero attractor is zero
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and since the SS-AP attractor is not always active, it avoids
estimation biases for large values of wi. Next, the SS-AP
update equation is obtained from eq. (12) as:

(15)ŵ(n+ 1) = ŵ(n) + µNU(n)S(n)ê(n)

+ µNλ[U(n)S(n)UT (n)− IM ] Θ(n)ŵ(n).

Furthermore, in the SS-AP, the term λΘ(n)ŵ(n) is projected
orthogonally onto the intersect subspace Π(n), as discussed
below. We can rewrite eq. (15), for µN = 1 and ε = 0, as
follows:

ŵ(n+ 1) = U †(n)d(n)︸ ︷︷ ︸
(affine) translation

+ [IM −U †(n)UT (n)]ŵ(n)︸ ︷︷ ︸
P⊥ΠU(n)

(ŵ(n))

− [IM −U †(n)UT (n)] λΘ(n)ŵ(n)︸ ︷︷ ︸
P⊥ΠU(n)

(λΘ(n)ŵ(n))

,

(16)

where P⊥ΠU(n)
is the projection onto the orthogonal com-

plement of ΠU(n) = span({u(n − i)}L−1
i=0 ), which is the

subspace spanned by the columns of U(n), with dimension
L. Furthermore, the projection PΠ(n) onto the intersection
hyperplane defined in eq. (10) (of dimension N −L) is equal
to P⊥ΠU(n)

, since each vector u(n− i) is perpendicular to the
corresponding Πn−i, for i = 0, . . . , L − 1. Therefore, the
geometric interpretation of eq. (16) is that the vectors ŵ(n)
and −λΘ(n)ŵ(n) are projected onto the hyperplane Π(n) at
each iteration of the algorithm. Going back to Figure 1, the
projection of the resulting SS-AP vector (point 5) will be in the
intersect hyperplane Πn ∩ Πn−1 (for L = 2) and approaches
the intersection between this hyperplane and the set Σ2, closer
to wo at point 3.

IV. NUMERICAL RESULTS

This section validates the proposed SS-AP algorithm th-
rough numerical simulation under the following operating
conditions: signal-to-noise ratios (SNR) of 10 and 25 dB,
channel length N = 16, as in [17], and sparsity level [11]
of 75%, i.e., K = 4 non-zero coefficients. Each simulation
experiment consists of 100 independent Monte Carlo runs,
each of which consisting of 3,000 iterations and the results
are averaged. In each simulation run, the positions of the
non-zero coefficients are randomly chosen and their values
follow a Gaussian distribution. We compare the performance
of the proposed SS-AP algorithm with the AP, ZA-APA, RZA-
APA and AP-SSI Geman-McClure in [17], here named GM-
AP, all with projection order L = 3, as well as the NLMS
and SS-NLMS [11]. The input signal is a correlated Gaussian
sequence derived through a first-order autoregressive process
given by u(n) = 0.8u(n − 1) + v(n), where v(n) is unit
power Gaussian noise. The observation noise is also additive
Gaussian with σ2

n = 10−SNR/10. We evaluate the mean square
error (MSE) between the reference signal and the estimated
outputs, the mean square deviation (MSD) between the optimal
and estimated coefficients and the number of iterations to
convergence.

Firstly, for each operating condition, the parameters µ and
λ are tuned by testing a grid of values, as in Figure 3-(a)
and Figure 4-(a). In Figure 3-(a), the SS-AP algorithm is
evaluated with SNR=25 dB on the ranges: µ from 0.05 to
0.25 and λ from zero to 1e−4 and we choose values close
to the elbow, i.e., where the required iterations increase more
rapidly, µ = 0.11 and λ = 1e−4, as a compromise between
MSE and iterations. Then we run the AP algorithms with
these parameters. Figure 3-(b) compares the resulting MSD
curves, showing that among the sparse AP algorithms, the SS-
AP achieves the lowest MSD. Other parameters are ε = 1e−5,
δ = 20 for RZA-APA, β = 5 for the GM-AP and γ =

√
2λ for

SS-AP, i.e., slope equal to −1. Likewise, in Figure 4-(a), the
SS-AP algorithm is evaluated with SNR=10 dB on the ranges:
µ from 0.02 to 0.12 and λ from zero to 4e−4 and we choose
values close to the elbow, µ = 0.05 and λ = 3.5e−4. Figure 4-
(b) compares the resulting MSD curves, showing again that the
SS-AP achieves the lowest MSD. Table I provides a summary
of the numerical results discussed above. Finally, in Table II
we present additional performance results for a new simulation
experiment, in which sparsity level of 87.5%, or K = 2 non-
zero coefficients, is considered, instead of K = 4.

TABLE I: Performance results with K = 4.

SNR= 25dB SNR= 10dB
MSE MSD Iter. MSE SMD Iter.

NLMS -23.83 -24.46 2888 -8.59 -7.00 2942
AP -23.80 -24.70 281 -9.45 -13.32 434
ZA-APA -23.96 -25.59 283 -9.52 -14.44 459
RZA-APA -23.97 -25.52 280 -9.54 -14.23 438
SS-AP -24.25 -29.62 276 -9.66 -18.22 465
GM-AP -24.25 -27.88 276 -9.67 -17.00 441

TABLE II: Performance results with K = 2.

SNR= 25dB SNR= 10dB
MSE MSD Iter. MSE SMD Iter.

NLMS -23.82 -24.65 2897 -8.72 -7.08 2945
AP -23.79 -24.76 287 -9.44 -13.27 463
ZA-APA -24.02 -25.93 288 -9.57 -15.05 491
RZA-APA -23.99 -25.74 283 -9.54 -14.35 466
SS-AP -24.53 -31.68 275 -9.76 -20.12 463
GM-AP -24.39 -28.86 265 -9.74 -18.25 466

V. CONCLUSIONS

The following conclusions can be drawn from our study:
- From the numerical simulations, AP-based algorithms out-

performed NLMS-based ones under correlated input signals.
Sparse AP (zero attractor) algorithms outperformed standard
AP in estimating zeroed coefficients.

- As the SNR decreases, the sparse AP parameters µ and λ
need to be adjusted, respectively, decreased and increased.
With the SS-AP, we can also adjust the attractor slope, by
decreasing the parameter γ.

- The proposed SS-AP outperformed the other sparse AP al-
gorithms in this study, specially under highly sparse settings,
by further improving the estimation of zeroed coefficients.
Finally, the numbers of iterations required by the sparse AP
algorithms were equivalent.
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(a) Tuning the parameters µ, λ. (b) MSD (dB) curves.

Fig. 3: Performance evaluation (K = 4) with SNR=25 dB.

(a) Tuning the parameters µ, λ. (b) MSD (dB) curves.

Fig. 4: Performance evaluation (K = 4) with SNR=10 dB.
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